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Chapter 4 Solutions to Selected Exercises
Notes:

• The questions are in a separate PDF on LongFormMath.com.

• For most problems there are many correct solutions, so the below are not the only correct ways to
solve the problems.

• If you spot an error, please email it to me at LongFormMath@gmail.com. Thanks!

Solution to Question 1. Part (a) converges by the alternating series test. Part (b) diverges by the kth-
term test. Part (c) converges by the geometric series test.

Solution to Question 2. We will prove it via the comparison test. Note that −|ak| ≤ ak ≤ |ak| for all k,
implying that

0 ≤ ak + |ak| ≤ 2|ak|
for all k. We are given that

∑∞
k=1 |ak| converges, which by the series limit laws means that

∑∞
k=1 2|ak|

converges. Combining this with the inequality above, by the comparison test we deduce that
∑∞

k=1(ak+ |ak|)
converges too.

From here, the series limit laws will finish it off for us. Since
∑∞

k=1 |ak| converges, also
∑∞

k=1−|ak|
converges. We have at this point shown that

∞∑
k=1

(ak + |ak|) and

∞∑
k=1

−|ak|

both converge. Applying the limit laws one last time, this means that their sum

∞∑
k=1

(ak + |ak| − |ak|) =

∞∑
k=1

ak

also converges, completing the proof.

Solution of Question 3.
Part (a). Answers will vary, but one example is the series where ak = 1/k.

Part (b). Since
∑∞

k=1 ak converges, by the kth-term test we have ak → 0. By the definition of sequence
converges (with ε = 1), there exists some N such that |ak − 0| < 1 for all k > N . Combined with the
assumption that 0 < ak, this means that 0 < ak < 1 for all n > N . Since there are at most N terms that are
at least 1, by Note 4.12 in the book we may change all terms which are larger than 1 to be 1/2, and doing
so does not change the convergence of the series. Call this new series

∞∑
k=1

ãk.

What we get is a convergent series where every term has 0 < ãk < 1. And so 0 < ã2k < ãk. And since
∞∑
k=1

ãk converges, by the comparison test we see that

∞∑
k=1

ã2k also converges.

And since

∞∑
k=1

ã2k and

∞∑
k=1

a2k also differ in only finitely many terms, the latter must converge too, as

desired.
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Part (c). First observe that

∞∑
k=1

(−1)k+1 1√
k

converges by the alternating series test, because ( 1√
k

) is

monotonically decreasing and 1√
k
→ 0. Next observe that

∞∑
k=1

(
(−1)k+1 1√

k

)2

=

∞∑
k=1

1

k
,

which is the harmonic series, which we showed in class (Proposition 4.14 in the book) diverges.

Solution of Question 4. Answers vary. One example for part (a) is where ak = (−1)k 1
k . And one example

for part (b) is there series 1− 1 + 1− 1 + 1− 1 + . . . , whose sequence of partial sums is 1, 0, 1, 0, 1, 0, 1, . . . ,
which has the convergent subsequence 1, 1, 1, 1, . . . .

Solution to Question 5.
Part (a). Note that

77.777777 . . . = 70 + 7 + 0.7 + 0.07 + 0.007 + · · · =
∞∑
k=0

70

10k
.

This geometric series has a = 70 and ratio r =
1

10
. Thus, by the geometric series formula,

77.777777 · · · = 70

1− 1
10

=
70

9/10
=

700

9
.

This is a ratio of integers, so the number is rational.

Part (b). Another decomposition is found by noting

77.777777 . . . = 77 + 0.77 + 0.0077 + 0.000077 + · · · =
∞∑
k=0

77

100k
.

This geometric series has a = 77 and ratio r =
1

100
. Thus, by the geometric series formula,

77.777777 · · · = 77

1− 1
100

=
77

99/100
=

7700

99
.

This is a ratio of integers, so the number is rational. In fact, it is the same fraction from part (a), since 7700
and 99 can both be divided by 11 to obtain 700

9 .

Part (c). Suppose the decimal expansion of q eventually repeats. Then there exist nonnegative integers
n (preperiod length) and m ≥ 1 (period length), an integer A, and digits forming one repeating block
represented by an integer B with 0 ≤ B ≤ 10m − 1, such that

q =
A

10n
+

B

10n+m
+

B

10n+2m
+

B

10n+3m
+ · · · = A

10n
+

B

10n

(
1

10m
+

1

102m
+

1

103m
+ · · ·

)
.

Here, A
10n encodes the finite part up to the start of repetition, and B

10n encodes one period shifted to begin
at the first repeating digit.

The infinite sum in parentheses is geometric with first term a = 1
10m and common ratio r = 1

10m , so(
1

10m
+

1

102m
+

1

103m
+ · · ·

)
=

1
10m

1− 1
10m

=
1

10m − 1
.
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Thus

q =
A

10n
+

B

10n
· 1

10m − 1
=

A(10m − 1) +B

10n(10m − 1)
.

The right-hand side is a ratio of integers, hence q is rational.

Solution to Question 6. Let
∑∞

k=1 ak be a series with ak 6= 0 and set

r = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ .
Assume r < 1. We prove that

∑∞
k=1 |ak| converges.

(a) Let q satisfy r < q < 1. Then ε = q − r > 0. By the definition of limit, there exists N ∈ N such that
for all k > N , we have∣∣∣∣∣∣∣∣ak+1

ak

∣∣∣∣− r∣∣∣∣ < ε

Thus, for k > N ,∣∣∣∣ak+1

ak

∣∣∣∣ < r + ε = q.

Multiplying by |ak| gives, for all k ≥ N ,

|ak+1| ≤ q |ak|.

(b) Because 0 < q < 1, the geometric series
∑∞

m=1 |aN | qm converges. Indeed,

∞∑
m=1

|aN | qm = |aN | ·
q

1− q
.

(c) First, from part (a) we showed that |ak+1| ≤ q |ak| for all k > N . Thus,

|aN+2| ≤ q|aN+1|,
|aN+3| ≤ q|aN+2| ≤ q2|aN+1|,
. . .

|aN+m| ≤ qm−1|aN+1|, for any m ∈ N.

Hence, for the tail of
∑
|ak|,

∞∑
k=N+1

|ak| ≤
∞∑

m=0

|aN+1| qm = |aN+1| ·
1

1− q
.

Since a finite sum
∑N

k=1 |ak| must equal a finite number L, adding it to a convergent tail shows

∞∑
k=1

|ak| = L+ |aN+1| ·
1

1− q
,

which is the sum of two finite numbers, hence is finite. Therefore, we have shown that
∑
ak converges

absolutely.



Real Analysis: A Long-Form Mathematics Textbook Jay Cummings

Solution to Question 7. Recall that to show a sequence (bn) diverges to ∞ we need to show that for any
M > 0 there exists a point N such that bn > M for all n > N . So once we construct our rearrangement we
will prove that it satisfies this definition.

To this end, let pk be the kth positive (or zero) term of (an) and let nk be the kth negative term of (an).

Since

∞∑
k=1

ak converges conditionally, we must have:

∞∑
k=1

pk =∞ and

∞∑
k=1

nk = −∞.

Since
∑∞

k=1 pk =∞ there exists some P1 such that

P1∑
k=1

pk > 1 + (−n1) > 1.

Likewise, there must exist some P2 > P1 such that(
P1∑
k=1

pk

)
+ n1 +

(
P2∑

k=P1+1

pk

)
> 2 + (−n2) > 2.

Likewise there must exist some P3 > P2 such that(
P1∑
k=1

pk

)
+ n1 +

(
P2∑

k=P1+1

pk

)
+ n2 +

(
P3∑

k=P2+1

pk

)
> 3 + (−n3) > 3.

Continuing in this way, we obtain a sum of all the pi’s and ni’s (meaning it is indeed a rearrangement)
such that for any M > 0, we know that the partial rearrangement(

P1∑
k=1

pk

)
+ n1 + · · ·+

 PM∑
k=PM−1+1

pk

 > M + (−nM ) > M.

Moreover, we now claim that after this point in our rearrangement the sum will never again be less than
M . The reason is that the next term in the sum is nM , but since by the inequality our sum is currently
larger than M + (−nm), adding this will not bring the sum below M . Furthermore, next we will add enough
positive terms so that after the next negative term (nM+1) we will remain above M + 1. And then we will
add enough positive terms so that after the next negative term (nM+2) we will remain above M + 2. This
will continue forever; so indeed, we will always remain above M .

Solution to Question 8. Let M > 0. Since
∑∞

k=1 ak =∞ there exists some N such that

n∑
k=1

ak > M

for all n > N (in particular, n = N + 1 satisfies the above). Consider an arbitrary rearrangement
∑∞

k=1 bk
of
∑∞

k=1 ak, and let f : N→ N be a bijection giving it; that is, bf(k) = ak. Let

N ′ = max{f(k) : k ∈ {1, 2, 3, . . . , N + 1}}.

Intuitively, the first N+1 terms of
∑∞

k=1 ak were permuted around by the bijection f and now are in different
positions in the sum

∑∞
k=1 bk; perhaps the first term

∑∞
k=1 ak is now the f(1) = 32nd term in

∑∞
k=1 bk, and

the second term in
∑∞

k=1 ak is now the f(2) = 8th term in
∑∞

k=1 bk, and so on. So we look at where all of the
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first N + 1 terms from
∑∞

k=1 ak went, and we let N ′ be the last location of these terms in the rearrangement∑∞
k=1 bk.
From this we see that b1, b2, b3, . . . , bN ′ contains all of the terms from a1, a2, a3, . . . , aN (and probably

many more). And since by assumption all the terms are non-negative, this in particular means that

N ′∑
k=1

bk ≥
N∑

k=1

ak.

And again, since all the terms are non-negative, we have that

n∑
k=1

bk ≥
N ′∑
k=1

bk for any n > N ′. Putting

this all together,
n∑

k=1

bk ≥
N ′∑
k=1

bk ≥
N∑

k=1

ak > M

for all n > N ′. So by definition,
∑∞

k=1 bk =∞.
We have shown that if

∑∞
k=1 ak =∞ then an arbitrary rearrangement of this series also diverges to ∞.

This completes the proof.

Solution to Question 9. Answers vary.

Solution to Question 10. Answers vary.


