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Chapter 3 Solutions to Selected Exercises
Notes:

• The questions are in a separate PDF on LongFormMath.com.

• For most problems there are many correct solutions, so the below are not the only correct ways to
solve the problems.

• If you spot an error, please email it to me at LongFormMath@gmail.com. Thanks!

Solution to Question 1. A sequence (an) converges to a ∈ R if for all ε > 0 there exists some N such that
|an − a| < ε for all n > N .

Solution to Question 2. There are many answers, but here are a few.

(a). Let an = (−1)n and a = 1. Then for any ε > 0, and any N ∈ N, let n = 2N (or any other even
number larger than N). Then |an−a| = |(−1)2N −1| = 0 < ε. So (an) does Nonverge-type-1 to a. However,
because an bounces between −1 and 1, by just letting ε = 1/2 it is evident that (an) will not converge to a.

(b). Let (an) be the sequence (0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, . . . ) and a = −2. Then, let ε = 3. So, for
any N ∈ N choose n = 2N + 1 (or any other odd number larger than N , so that an = 0). Then we have
|an − a| = |0 − (−2)| = 2 < ε. So (an) does Nonverge-type-2 to a. However, clearly an 6→ −2 since if, say,
ε = 1, and any N you choose, if n is larger than n and even then we certainly do not have |an − a| < ε.

(c). Let an = n and a = 2. Then for any ε > 0, let N = 1 and n = 2. Then |an − a| = |2− 2| = 0 < ε.
So (an) does Nonverge-type-3 to a. However, because an is going off to ∞, clearly it is not converging to 2.
Further, it does not Nonverge-type-2 to 2, because for any ε > 0, let N = dε+ 10e. Then, for every n > N ,
note that

|an − 2| = |dε+ 10e − 2| ≥ ε+ 10− 2 > ε.

(d). This is a bad definition of convergence because, by letting N = 1, if forces |an − a| < ε for every
n > N . And that forces an = a for every n > 2. And that means that the only sequences that would
“converge” under this definition are constant sequences and sequences which are constant starting with the
second term. That is,

a, a, a, a, a, . . .

and
b, a, a, a, a, . . .

both converge to a, but nothing else does.

Solution of Question 3.
(a). Let ε > 0. Let N = 4

ε2 and n > N . Then,

|an − a| =
∣∣∣∣8 +

2√
n
− 8

∣∣∣∣ =

∣∣∣∣ 2√
n

∣∣∣∣ =
2√
n
<

2√
N

=
2√
4/ε2

=
2

2/ε
= ε.

That is, |an − a| < ε for any n > N . And so, by definition, an → 8 as n→∞.
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(b). Let ε > 0. Let N = 39
12ε + 3

4 and let n > N . Then,

|an − a| =
∣∣∣∣5n+ 6

4n− 3
− 5

4

∣∣∣∣
=

∣∣∣∣4(5n+ 6)

4(4n− 3)
− 5(4n− 3)

4(4n− 3)

∣∣∣∣
=

∣∣∣∣20n+ 24

16n− 12
− 20n− 15

16n− 12

∣∣∣∣
=

∣∣∣∣ 39

16n− 12

∣∣∣∣
which, because n > 0,

=
39

16n− 12
,

and since n > N ,

<
39

16N − 12

=
39

16
(

39
16ε + 3

4

)
− 12

=
39

39/ε

= ε.

That is, |an − a| < ε for any n > N . And so, by definition, an → 5
4 as n→∞.

(c). Let ε > 0. Let N = 1
ε2 and let n > N . Then,

|an − 0| =
∣∣∣∣ √nn+

√
n
− 0

∣∣∣∣
=

√
n

n+
√
n

<

√
n

n

=
1√
n
.

Since n > N = 1/ε2, we have

1√
n
<

1√
N

=
1√
1/ε2

= ε.

That is, |an − 0| < ε for any n > N . And so, by definition, an → 0 as n→∞.

(d). Let ε > 0, let N = max{ 5
4ε + 3

2 , 1}, and notice that this implies N ≥ 5
4ε + 3

2 and N ≥ 1. Then, consider
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any n > N . First, observe that the function can be simplified by factoring.

|an − 1
2 | =

∣∣∣∣n2 + 2n+ 1

2n2 − n− 3
− 1

2

∣∣∣∣
=

∣∣∣∣ (n+ 1)(n+ 1)

(2n− 3)(n+ 1)
− 1

2

∣∣∣∣
=

∣∣∣∣ n+ 1

2n− 3
− 1

2

∣∣∣∣
=

∣∣∣∣2(n+ 1)− (2n− 3)

2(2n− 3)

∣∣∣∣
=

∣∣∣∣ 5

4n− 6

∣∣∣∣
and because n > N ≥ 1,

=
5

4n− 6
.

Now, because N ≥ 5
4ε + 3

2 and n > N , we have

|an − 1
2 | =

5

4n− 6
<

5

4N − 6
=

5

4( 5
4ε + 3

2 )− 6
=

5

5/ε
= ε.

That is, |an − 1
2 | < ε for any n > N . And so, by definition, an → 1

2 as n→∞.

Solution of Question 4. Part (a). Let ε > 0. Since ε
2 > 0 and an → a, we know that there exists some

N1 such that |an − a| < ε/2 for all n > N1. Likewise, since ε
2 > 0 and bn → b, we know that there exists

some N2 such that |bn − b| < ε/2 for all n > N2.
Now let N = max{N1, N2}. Then for any n > N we have

|(an + bn)− (a+ b)| = |(an − a) + (bn − b)|
≤ |an − a|+ |bn − b| (triangle inequality)

<
ε

2
+
ε

2
= ε,

completing the proof.

Part (b). Let ε > 0. Since ε
|c|+1 > 0 and an → a, we know that there exists some N such that

|an − a| < ε
|c|+1 for all n > N . Therefore, for this same N we have that

|c · an − c · a| = |c(an − a)| = |c| · |an − a| < |c| ·
ε

|c|+ 1
< ε,

for all n > N . Therefore (c · an) converges to c · a.

Solution to Question 5. Part (a). Answers vary. But one example is if (an) and (bn) are both the
sequence (n), which diverges to∞, but their quotient is the constant sequence (1), which converges to 1.

Part (b). One way is to let the denominator converge to zero, which blows up the fraction. So if (an)
is the constant sequence (1), and (bn) is the sequence (1/n), then then both converge, but (anbn ) = (n), which
diverges to ∞.

Part (c). One way to achieve this is use the power of the squaring function to turn negative things
positive. For example, letting an = (−1)n gives a sequence whose limit does not exist. But (a2n) is the
sequence 1, 1, 1, 1, . . . , which converges to 1.
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Solution to Question 6.
Scratch Work. To have it be bounded we want part of the sequence to go off to ∞ (or −∞), but to avoid
it diverging to infinity we can not let the whole sequence get bigger and bigger. Remember, to diverge to ∞
means that for every M > 0 there exists an N such that for every n > N , we have an > M . Whereas to be
unbounded you just have to have some an > M .

So that’s the difference. For each M we want to get a term above M , we don’t want all the terms to
stay above M . There are many ways to do this, but below is one example.

Solution. There are many examples, but here’s one:

an =

{
n if n is even

1 if n is odd

Solution to Question 7. Part (a). Let an = 1 + (−1)n
nπ . Then note that

− 1

nπ
≤ (−1)n

nπ
≤ 1

nπ
.

Adding 1 to all sides gives

1− 1

nπ
≤ an ≤ 1 +

1

nπ
.

Now, provided that we can show that lim
n→∞

(
1− 1

nπ

)
= 1 and lim

n→∞

(
1 +

1

nπ

)
= 1, then by the Sequence

Squeeze Theorem (Theorem 3.23) we will be able to conclude that

lim
n→∞

an = 1,

which will complete the proof.
To do this, let ε > 0. Define bn = 1− 1

nπ . Then

|bn − 1| =
∣∣∣∣1− 1

nπ
− 1

∣∣∣∣
=

∣∣∣∣− 1

nπ

∣∣∣∣
=

1

nπ
.

Choose N = 1
ε1/π

. If n > N , then

|bn − 1| = 1

nπ
<

1

Nπ
=

1

(1/ε1/π)π
=

1

1/ε
= ε.

Therefore, by definition, limn→∞ bn = 1.

And, in almost the exact same way we can show that lim
n→∞

(
1 +

1

nπ

)
= 1.

Part (b). This overly-elaborate problem is supposed to be a more interesting version of Example 3.28
in the book. The proof of it is nearly identical.

Let an be the the number containing the first n digits (after the decimal point) of this infinite-book
translation into the decimal number.
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Note that an+1 and an match exactly until the last digits of an+1. Therefore, an+1 − an is a number
with a bunch of zeros followed by a single digit in the n+ 1 place. In particular,

an+1 − an > 0

for all n. We have shown that an+1 > an for all n, proving that (an) is monotone increasing. Furthermore
note an ≤ 1 for all n, since these are all decimal number starting “0.N”.

We have shown that (an) is monotone increasing and bounded above, therefore by the monotone conver-
gence theorem (Theorem ??) the sequence converges to a book telling the entire history of time.

Solution to Question 8. One such sequence is defined by

an =


−3 if n = 3k for some k ∈ Z
14 if n = 3k + 1 for some k ∈ Z
n if n = 3k + 2 for some k ∈ Z

This sequence has a subsequence (−3,−3,−3,−3,−3, . . . ) which converges to −3. It has another subsequence
(14, 14, 14, 14, 14, . . . ) which converges to 14. And has another subsequence (2, 5, 8, 11, 14, . . . ) which diverges
to ∞.

Solution to Question 9. Let (an) be a sequence of real numbers. Prove that if every subsequence of (an)
converges, then (an) converges too.

Solution. Observe that by the definition of a subsequence (where nk = k for all k), (an) is a subsequence
of (an). Therefore, since every subsequence converges, that would include (an) itself! So, indeed, we have
shown that (an) converges.

Solution to Question 10. Every bounded sequence has a convergent subsequence.

Solution to Question 11. A sequence (an) is Cauchy if for all ε > 0 there exists1 some N such that

|am − an| < ε

for all m,n > N .

Solution to Question 12. Let ε > 0. By the Archimedean principle, there exists N ∈ N such that

N >
2

ε
.

(Or, equivalently, there is an N ∈ N for which 1
N < ε

2 .)

Let m,n > N . Then, using the triangle inequality,∣∣∣∣ 1n − 1

m

∣∣∣∣ ≤ ∣∣∣∣ 1n
∣∣∣∣+

∣∣∣∣ 1

m

∣∣∣∣ =
1

n
+

1

m
<

1

N
+

1

N
=

2

N
< ε.

Therefore, for every ε > 0 there exists N such that for all m,n > N we have∣∣∣∣ 1n − 1

m

∣∣∣∣ < ε.

Hence (1/n) is a Cauchy sequence.


