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• From ~41,000 BC. 

• 29 clear notches.
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Ishango Bone
• From ~18,000 BC.

• Has 3 columns, with 48, 60 and 60 notches.

Both bones are the fibula of baboons!



Ishango Bone
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When Should A Math 
History Course Begin?

• And how much should one focus on ancient, 
intermediate and modern math?

• We will start with ancient counting by humans, and 
go all the way to the 21st century.

• First three chapters discuss ancient math.

• Last seven chapters begin with an early idea, and 
track its evolution to modern theorems and major 
fields of study. This creates a natural balance 
between eras.

Note: 
Many 

animals 
“count”!
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How Humans Count

• Fingers.   (Many methods)

• Tally marks.   (Congo, Czech, etc in Stone Age.)

• Knots in rope.   (Peru, China)

• Shells, beads.   (Native Americans)

Objects:
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Number Bases
• Base 10 (decimal system): Now, almost everyone

• Base 20 (vegesimal system): E.g., Mayans, Aztecs

• Base 5: E.g., Aboriginal Australians, Luiseño Native 
Americans

• Base 60 (sexagesimal system): E.g., Babylonians

• Base 4: E.g., Papua New Guinea, my son at 22 months

• Base 2 (binary system): E.g., Computers
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Number Base Notation
Notation. When we write a number like 3,835, that is 
notation for 
                      3 ⋅ 1,000 + 8 ⋅ 100 + 3 ⋅ 10 + 5

Notation. A number in base  is expressed as 
                             , 
where each  is an integer between  and .

b
(akak−1…a2a1a0)b

ai 0 b − 1

Converting the number  to base 10 
gives 
          .

(akak−1…a2a1a0)b

akbk + ak−1bk−1 + … + a2b2 + a1b1 + a0 ⋅ b0

= 3 ⋅ 103 + 8 ⋅ 102 + 3 ⋅ 101 + 5 ⋅ 100 .
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Practice
Example. Write  in base 10.(123)4

Solution.  
 
                 1 ⋅ 42 + 2 ⋅ 41 + 3 ⋅ 40

= 16 + 8 + 3

= 27
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Practice
Example. Write the (base 10) number 34 in base 3.

Solution. The powers of 3 that are less than 34 are 
27, 9, 3 and 1. After 1 copy of 27, we are left with

34 − 27 = 7.
We don’t need any 9s. After 2 copies of 3, we are left with

7 − 2 ⋅ 3 = 1.
Then, we need 1 copy of 1. In summary:

34 = 1 ⋅ 33 + 0 ⋅ 32 + 2 ⋅ 31 + 1 ⋅ 30

So,
(34)10 = (1021)3 .
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character for each power of 10
Example: Chinese-Japanese numeral system
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• 1. Positional System: Each position is a power of 10.

• 2. Multiplicative Grouping System: Have a 
character for each power of 10
Example: Chinese-Japanese numeral system

Example:  3,854 = 3 ⋅ 1,000 + 8 ⋅ 100 + 5 ⋅ 10 + 4

= 3 ⋅ 103 + 8 ⋅ 102 + 5 ⋅ 101 + 4

4 Ways People Write Numbers

Second example, from your homework: Babylonians

5, 062 = 5 · 1, 000 + 6 · 10 + 2
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4 Ways People Write Numbers
• 3. Simple Grouping System: Add everything up.

Example: Egyptian hieroglyphs

• Another example: 
Roman numerals.

• Except for the 
more modern 
subtraction rules
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• 4. Ciphered systems: It’s… complicated. For a base 
, we need symbols forb

Example: Ionic Greek system

1,2,…, b − 1
b,2b, …, (b − 1)b
b2,2b2, …, (b − 1)b2

b3,2b3, …, (b − 1)b3

⋮



4 Ways People Write Numbers

• Ciphered systems: It’s… complicated. For a base 
b, need symbols for

Example: Ionic Greek system



Question: Which 
system is best?
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Zero

• A symbol

• A number

• A magnitude

• A direction separator

• A place-holder

• An idea

The Indians and the Mayans were the two civilizations to 
discover zero and recognize its deep potential as:

(This is a big deal)

In other cultures, understanding was incomplete.
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Think Like A Math Historian

We will come back to this soon.
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Multiplication Tables

• First known decimal multiplication table is a 2,300 
year old Chinese multiplication table.

• It was discovered in 2009!

• After counting comes arithmetic. Simple addition 
and subtraction could be done in head, on fingers, 
or with simple tools. Multiplication was probably 
much harder. 

• First known multiplication table is a 4,000 year old 
Babylonian (base 60) multiplication table.
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Tsinghua Bamboo Strips
• An ancient multiplication table, written on bamboo 

strips and found in China, is the first known 
base-10 multiplication table. 

• With a little extra work, one can use it to compute 
the product of any two integers or half integers 
from 0.5 to 99.5. 
That is, you can multiply together any two numbers 
from this list: 0.5, 1, 1.5, 2, 2.5, … , 99.5.
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Tsinghua Bamboo Strips
• Example: 24 ⋅ 36.5 = ?

24 ⋅ 36.5 = (20 + 4) ⋅ (30 + 6 + 0.5)
= 20 ⋅ 30 + 20 ⋅ 6 + 20 ⋅ 0.5 + 4 ⋅ 30 + 4 ⋅ 6 + 4 ⋅ 0.5



Tsinghua Bamboo Strips
• Example: 24 ⋅ 36.5 = ?

24 ⋅ 36.5 = (20 + 4) ⋅ (30 + 6 + 0.5)
= 20 ⋅ 30 + 20 ⋅ 6 + 20 ⋅ 0.5 + 4 ⋅ 30 + 4 ⋅ 6 + 4 ⋅ 0.5
= Look up on table, then add together
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Counting Board

Represents 4,286

• Appeared in many 
forms and many places.

• This is what a Roman 
one might look like.

• Ancient Chinese 
mathematicians 
leveraged them to 
begin an important area 
of math. (Chapter 2)
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The Incan Empire
• The Inca were a great but relatively short-lived 

empire, peaking in the 16th century.

• They did not have a written language.

• How do you record numbers and do math without 
writing?

• The Inca used what is called a quipu.



Video: Quipus

https://www.youtube.com/watch?v=AmPyz1kCbOw


Video: Quipus

https://www.youtube.com/watch?v=AmPyz1kCbOw


Video: Quipus

https://www.youtube.com/watch?v=OFbbiAf8kUo


Video: Quipus

https://www.youtube.com/watch?v=OFbbiAf8kUo


The Aftermath



The Aftermath
• What about modern computers?



The Aftermath
• What about modern computers?

• Mechanical computers were developed before 
electric computers. They ran on punch cards.



The Aftermath
• What about modern computers?

• Mechanical computers were developed before 
electric computers. They ran on punch cards.

• Charles Babbage invented 
the difference engine to 
perform computations. He 
later invented the analytical 
engine to do more complex 
tasks. It was the first 
“modern” computer. Portion 
of it pictured here —>
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The Aftermath: Computers
• The theoretical study of 

computers would be 
advanced in the 20th 
century by Alan Turing.

• To study a computer’s 
limits, in 1936 he invented 
the “Turing machine.”
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• Yang Hui, a much more modern Chinese 

mathematician (~1238-1298 AD) had a 3-step 
procedure to create this square.
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Step 3: Scrunch together.

Hui also came up with a 
similar algorithm to construct 

a 4x4 magic square.
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count too, to some 
extent. For example, 
crows.

• Old story of a hunter 
hiding in a shelter.
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• Appendix B: The correct pronunciations of Charles 

Babbage, Ada Lovelace, John Napier, Blaise Pascal, Alan 
Turing, Acharya Virasena, Yang Hui.

• Appendix D: The etymologies of Abacus, Arithmetic, Array, 
Base, Binary, Calculate, Compute, Decimal, Difference, 
Digit, Divide, Exponent, Factor, Integer, Logarithm, 
Mathematics, Multiply, Natural number, Number, Origin, 
Prime, Problem, Quotient, Solution, Subtract, Sum and 
Zero.

• Appendix F: The biographies of Ada Lovelace and Alan 
Turing.
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A People’s History of Math
• A “people’s history” generally studies the history of non-

elites, although this term has been used in many different 
ways in literature. After each chapter in the book is a 
“people’s history” section.

Five of these are about how non-mathematicians made 
interesting progress in math.

Two discuss ways that big social forces have influenced 
math history.

Two focus on the progression to the point where many 
people can choose to study math.

And one on who mathematicians were as people.
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• Merchants used clay tokens to represent goods 

10,000 years ago. E.g. from ~3500BC in Iran:

• Later, these were often stored in boxes, and one 
might write on the box to label what was inside. 
This advancement is due to “the people.”
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People’s History of Numbers
• Hindu-Arabic numerals may have also come from 

common merchants, although it is unclear.

“It is India that gave us the ingenious method of 
expressing all numbers by means of ten symbols, 
each symbol receiving a value of position as well as 
an absolute value; a profound and important idea 
which appears so simple to us now that we ignore 
its true merit. But its very simplicity and the great 
ease which it has lent to all computations put our 
arithmetic in the first rank of useful inventions; and 
we shall appreciate the grandeur of this 
achievement the more when we remember that it 
escaped the genius of Archimedes and Apollonius, 
two of the greatest men produced by antiquity.” 
                         —Pierre-Simon Laplace (1749-1827)
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People’s History of Numbers
• Hindu-Arabic numerals were much easier to use 

than Roman numerals. Some argue that their utility 
was guarded.

The transition [in Europe to Hindu-Arabic numerals], far from being 
immediate, extended over long centuries. The struggle between the 
Abacists, who defended the old traditions, and the Algorists, who 
advocated the reform, lasted from the eleventh to the fifteenth century and 
went through all the usual stages of obscurantism and reaction. In some 
places, Arabic numerals were banned from official documents; in others, 
the art was prohibited altogether. And, as usual, did not succeed in 
abolishing, but merely served to spread bootlegging, ample evidence of 
which is found in the thirteenth century archives of Italy, where, it appears, 
merchants were using the Arabic numerals as a sort of secret code.
                                   —Tony Dantzig in Number: The Language of Science
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People’s History of Numbers
• To the present day, money has served as a catalyst 

for mathematical progress.

• Example: Maritime trade insurance groups 
developing risk management math

• Today, the math used in finance is incredibly 
advanced and quants are paid well to push their 
company’s abilities further.


