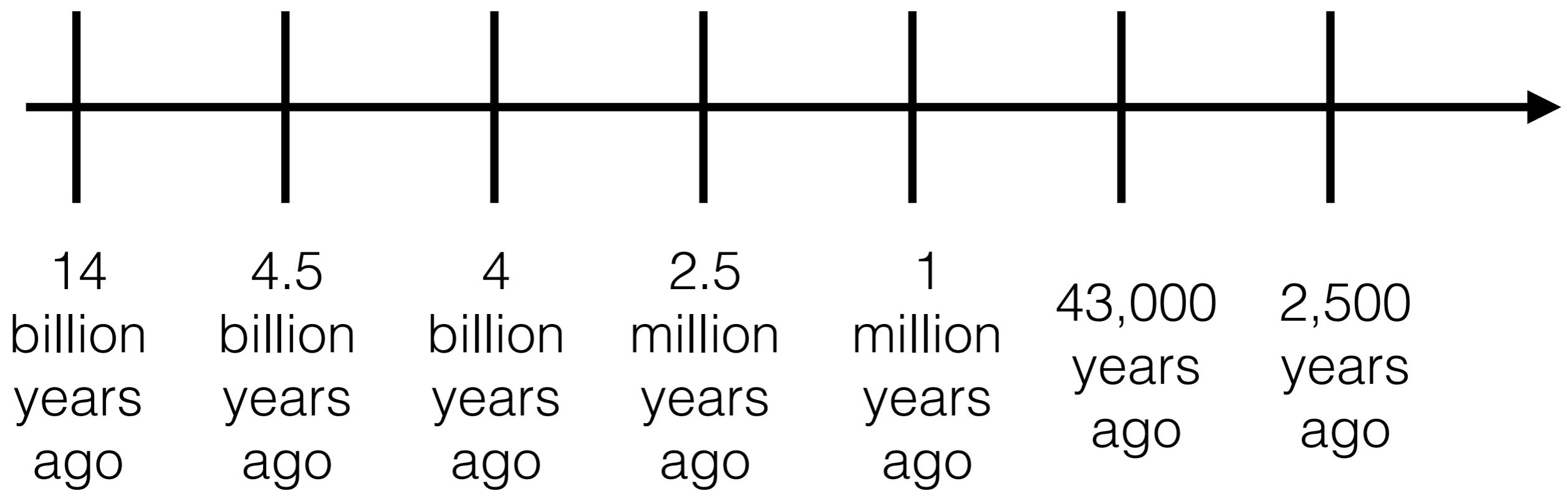





# The History of Mathematics

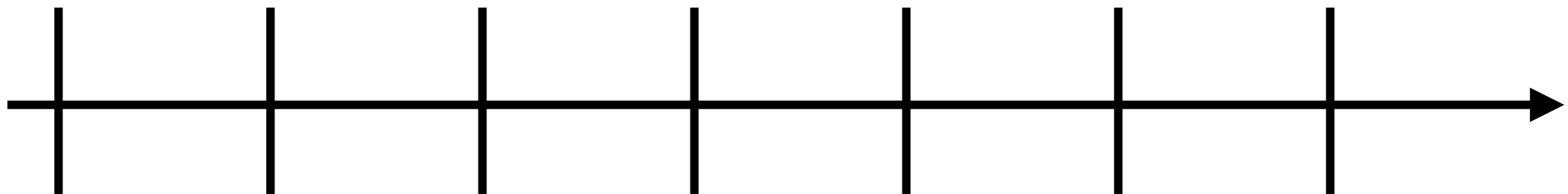
Math 190, Professor Jay Cummings




# When Did Math Begin?

# When Did Math Begin?

- Talk to a classmate about when you think the history of math began.


# A Brief History of Time

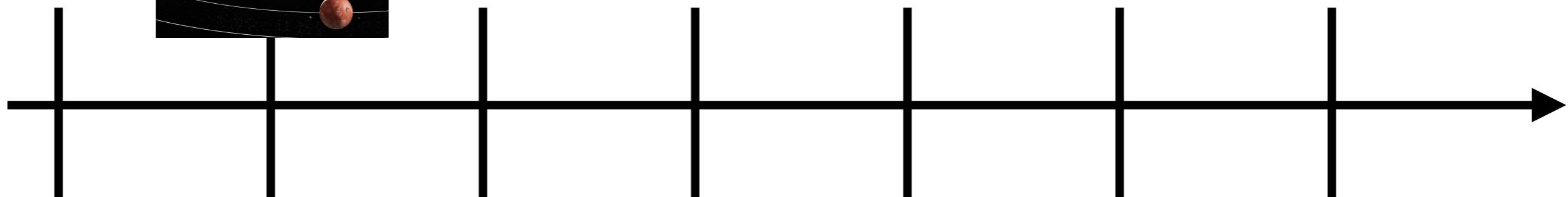
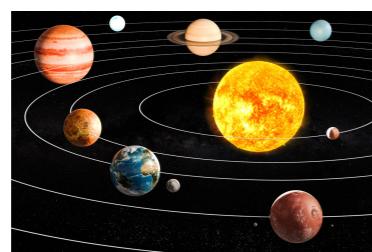


# A Brief History of Time



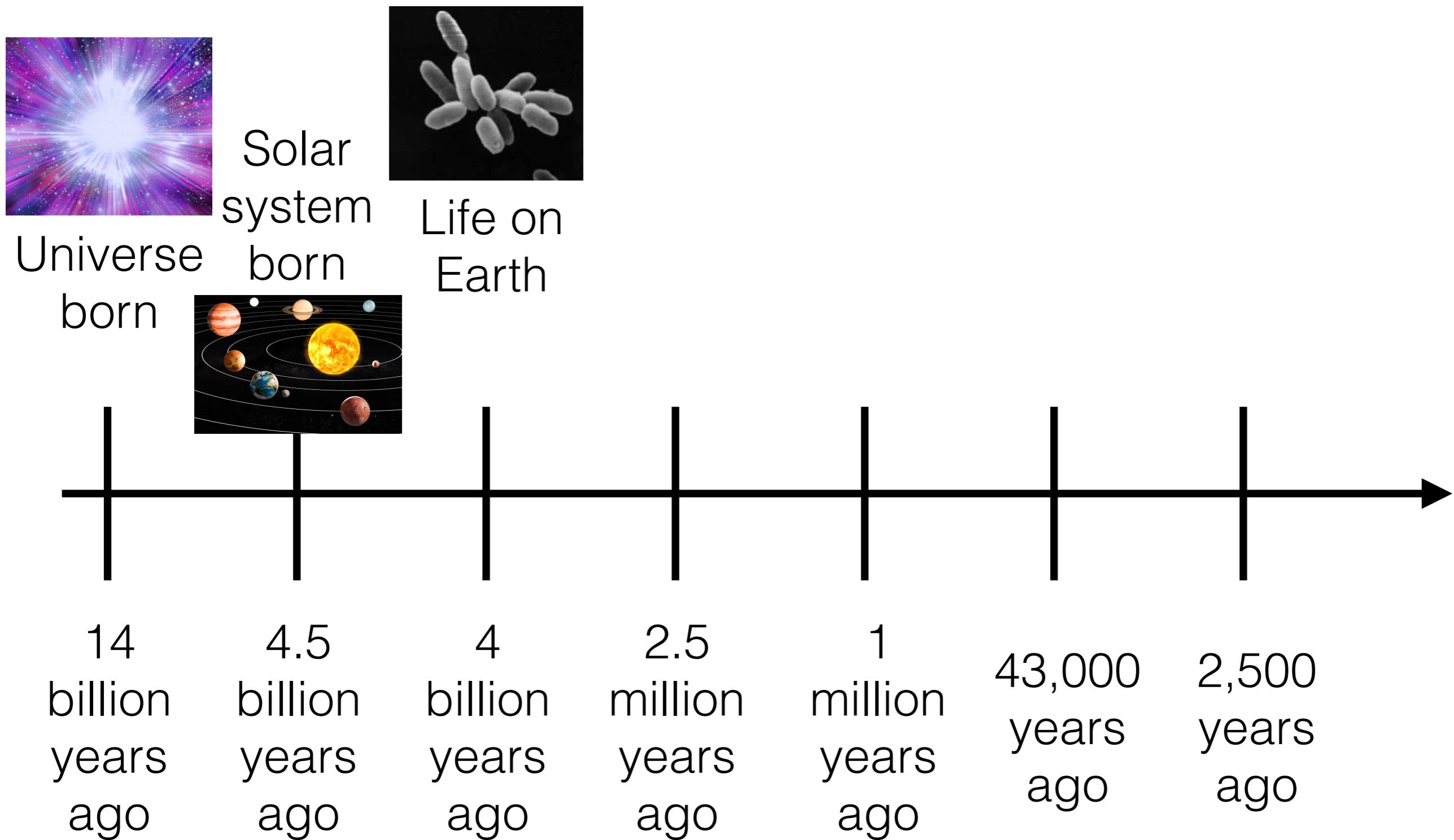
Universe  
born



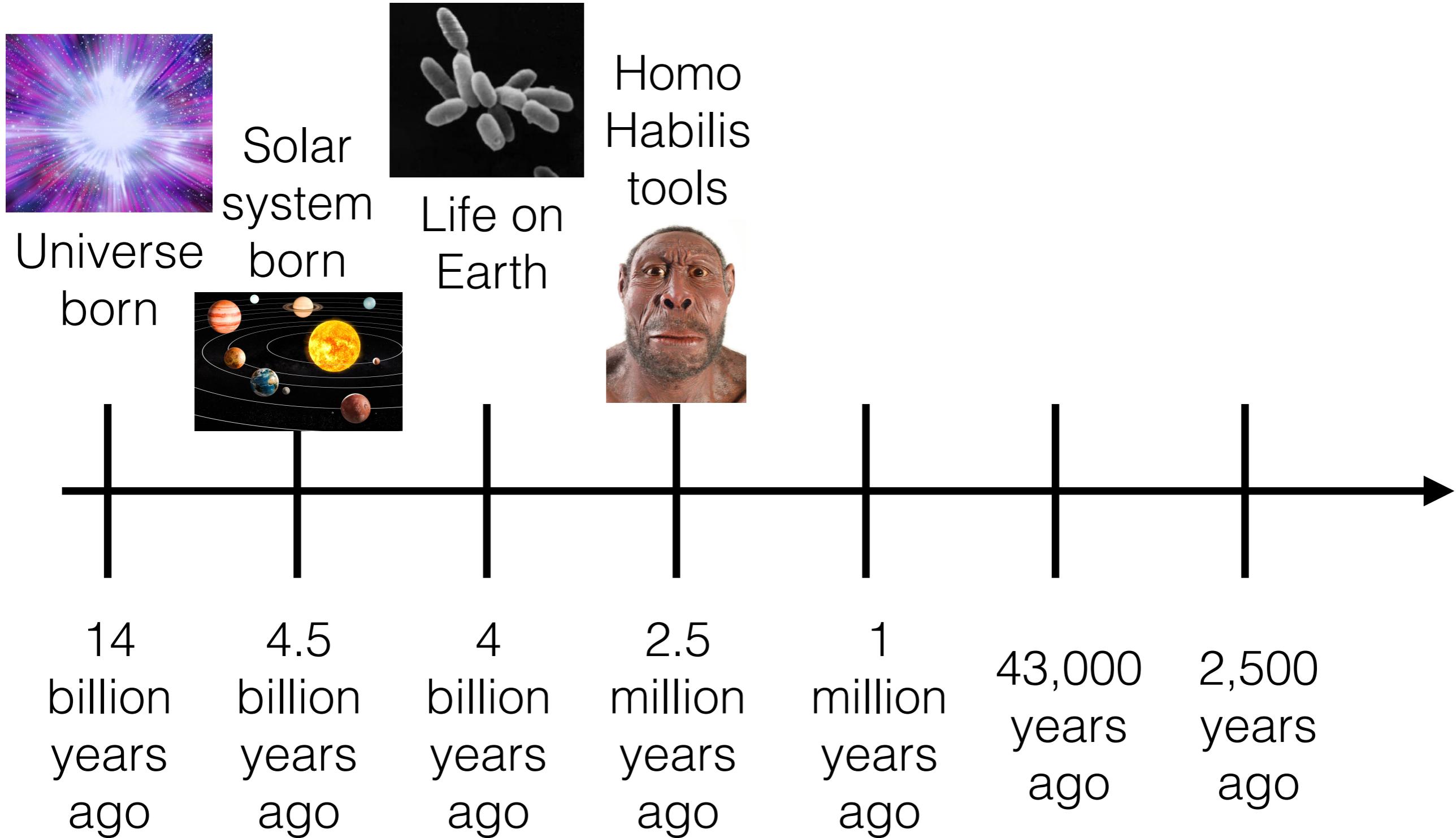


14 billion years ago    4.5 billion years ago    4 billion years ago    2.5 million years ago    1 million years ago    43,000 years ago    2,500 years ago

# A Brief History of Time




Solar  
system

Universe  
born




|                               |                                |                              |                                |                              |                        |                       |
|-------------------------------|--------------------------------|------------------------------|--------------------------------|------------------------------|------------------------|-----------------------|
| 14<br>billion<br>years<br>ago | 4.5<br>billion<br>years<br>ago | 4<br>billion<br>years<br>ago | 2.5<br>million<br>years<br>ago | 1<br>million<br>years<br>ago | 43,000<br>years<br>ago | 2,500<br>years<br>ago |
|-------------------------------|--------------------------------|------------------------------|--------------------------------|------------------------------|------------------------|-----------------------|

# A Brief History of Time



# A Brief History of Time



# A Brief History of Time

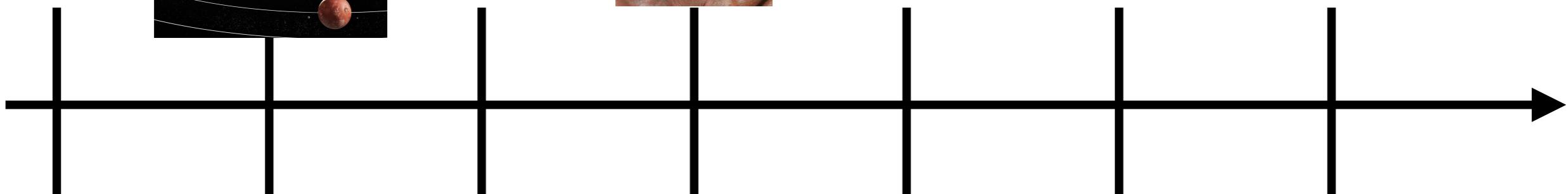



Universe  
born



Solar  
system  
born




Life on  
Earth



Homo  
Habilis  
tools



Homo  
Erectus  
fire



14  
billion  
years  
ago

4.5  
billion  
years  
ago

4  
billion  
years  
ago

2.5  
million  
years  
ago

1  
million  
years  
ago

43,000  
years  
ago

2,500  
years  
ago

# A Brief History of Time



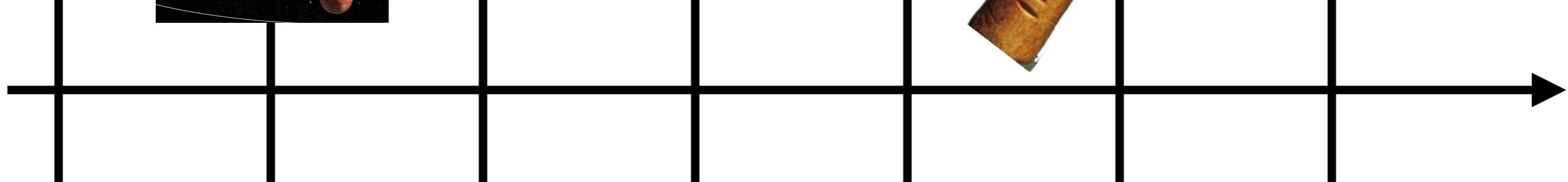
Universe  
born




Solar  
system  
born



Life on  
Earth


Homo  
Habilis  
tools



Homo  
Erectus  
fire



Tally  
marks  
on bone



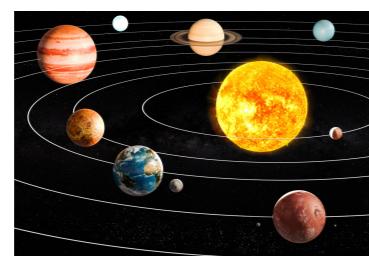
14  
billion  
years  
ago

4.5  
billion  
years  
ago

4  
billion  
years  
ago

2.5  
million  
years  
ago

1  
million  
years  
ago

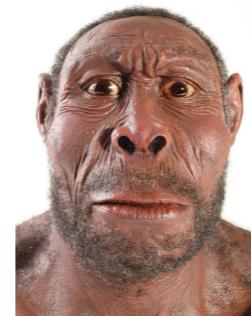

43,000  
years  
ago

2,500  
years  
ago

# A Brief History of Time



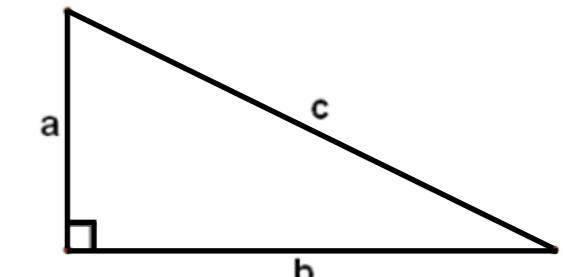
Universe  
born



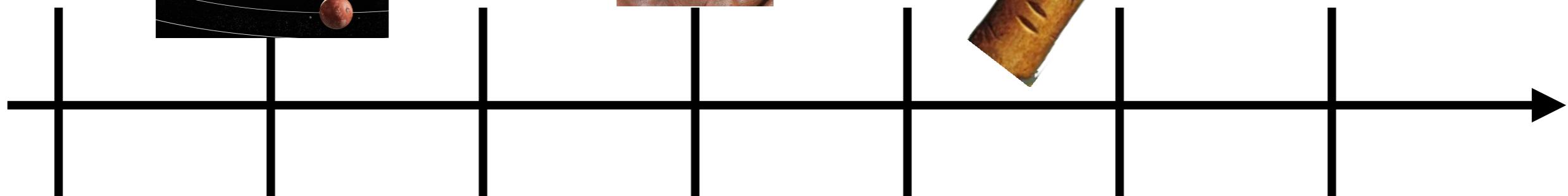

Solar  
system  
born



Life on  
Earth


Homo  
Habilis  
tools




Homo  
Erectus  
fire



Tally  
marks  
on bone



Pythagorean  
theorem  
proved



14  
billion  
years  
ago

4.5  
billion  
years  
ago

4  
billion  
years  
ago

2.5  
million  
years  
ago

1  
million  
years  
ago

43,000  
years  
ago

2,500  
years  
ago

# Lebombo Bone



# Lebombo Bone

- From ~41,000 BC.
- 29 clear notches.

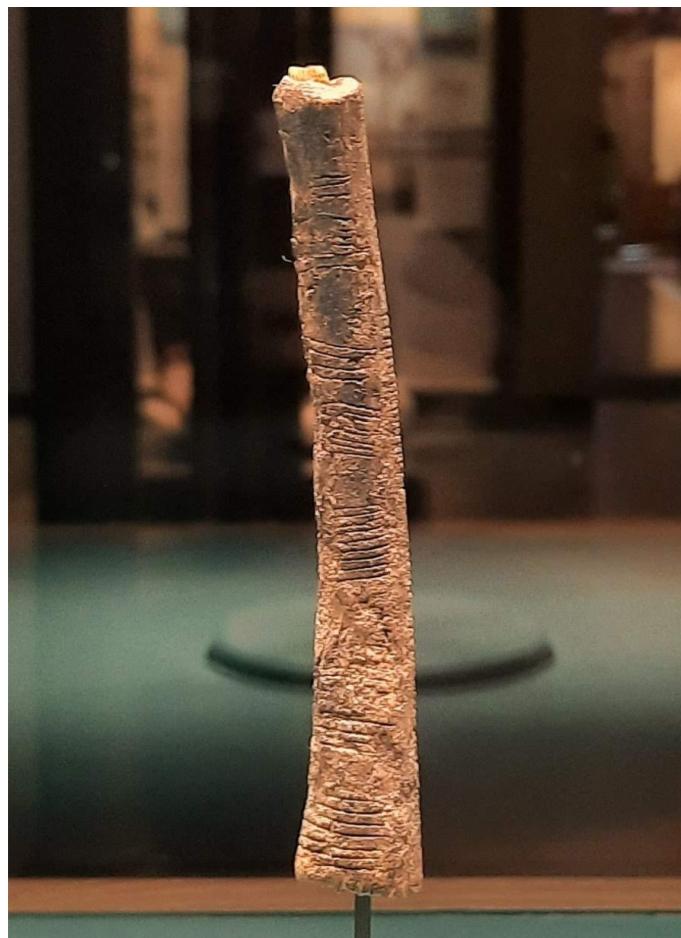


# Lebombo Bone



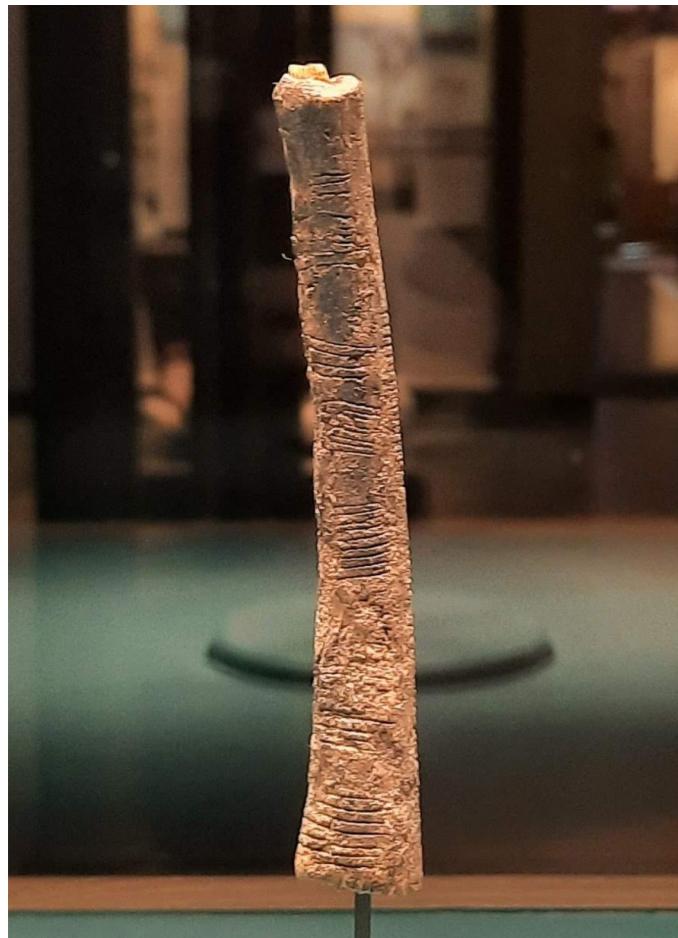
# Ishango Bone

# Ishango Bone


- From ~18,000 BC.

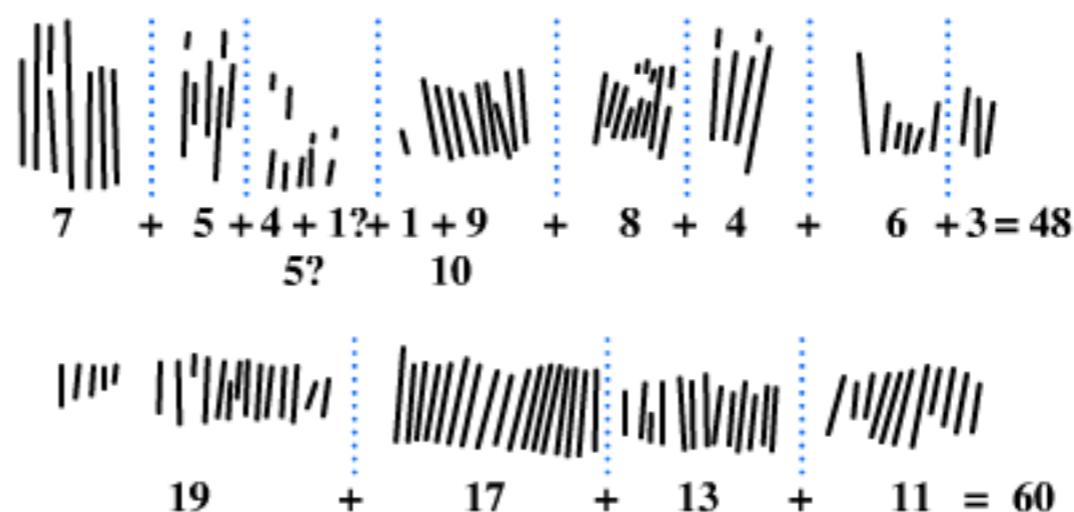
# Ishango Bone

- From ~18,000 BC.
- Has 3 columns, with 48, 60 and 60 notches.



# Ishango Bone

- From ~18,000 BC.
- Has 3 columns, with 48, 60 and 60 notches.





# Ishango Bone

- From ~18,000 BC.
- Has 3 columns, with 48, 60 and 60 notches.

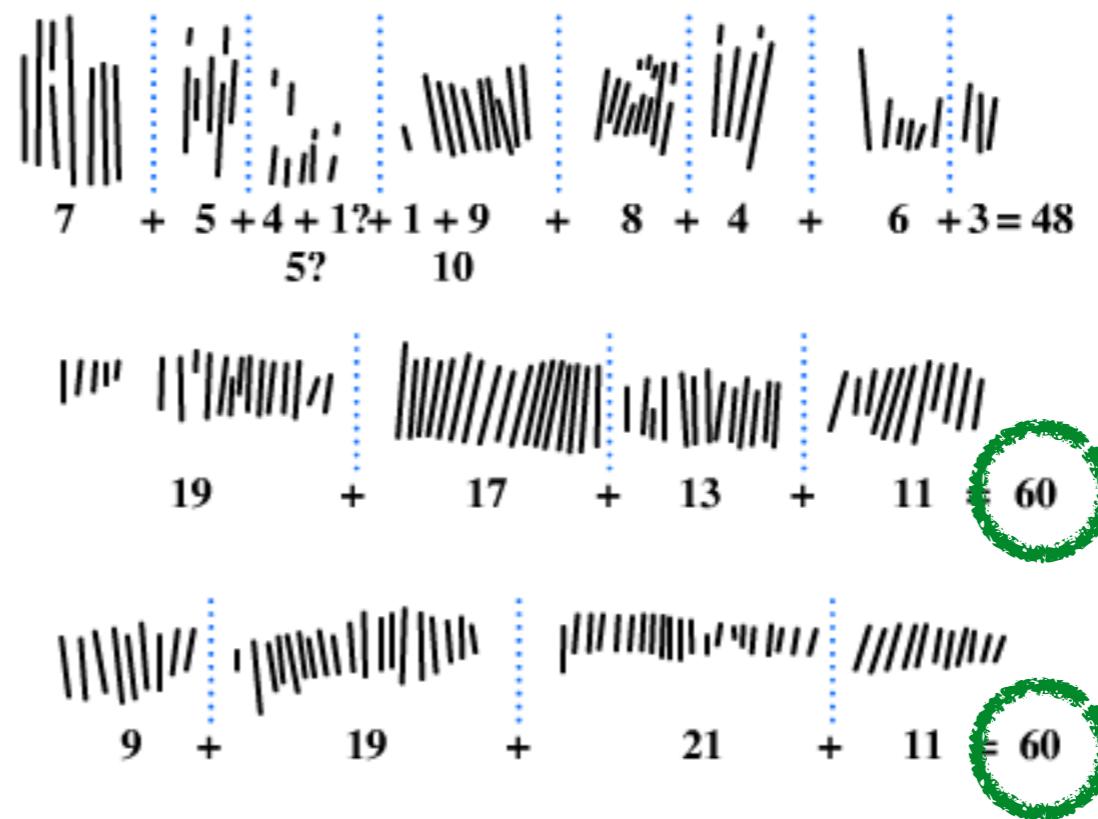


# Ishango Bone

- From ~18,000 BC.
- Has 3 columns, with 48, 60 and 60 notches.

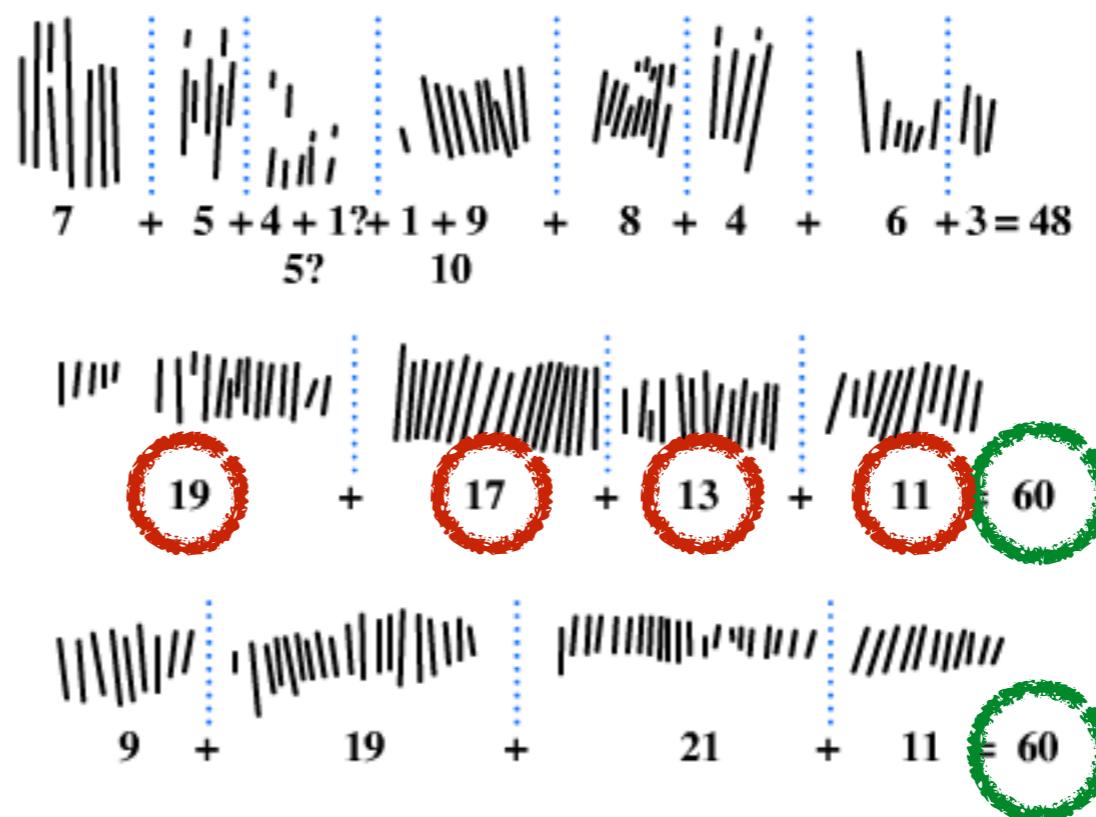


# Ishango Bone


- From ~18,000 BC.
- Has 3 columns, with 48, 60 and 60 notches.

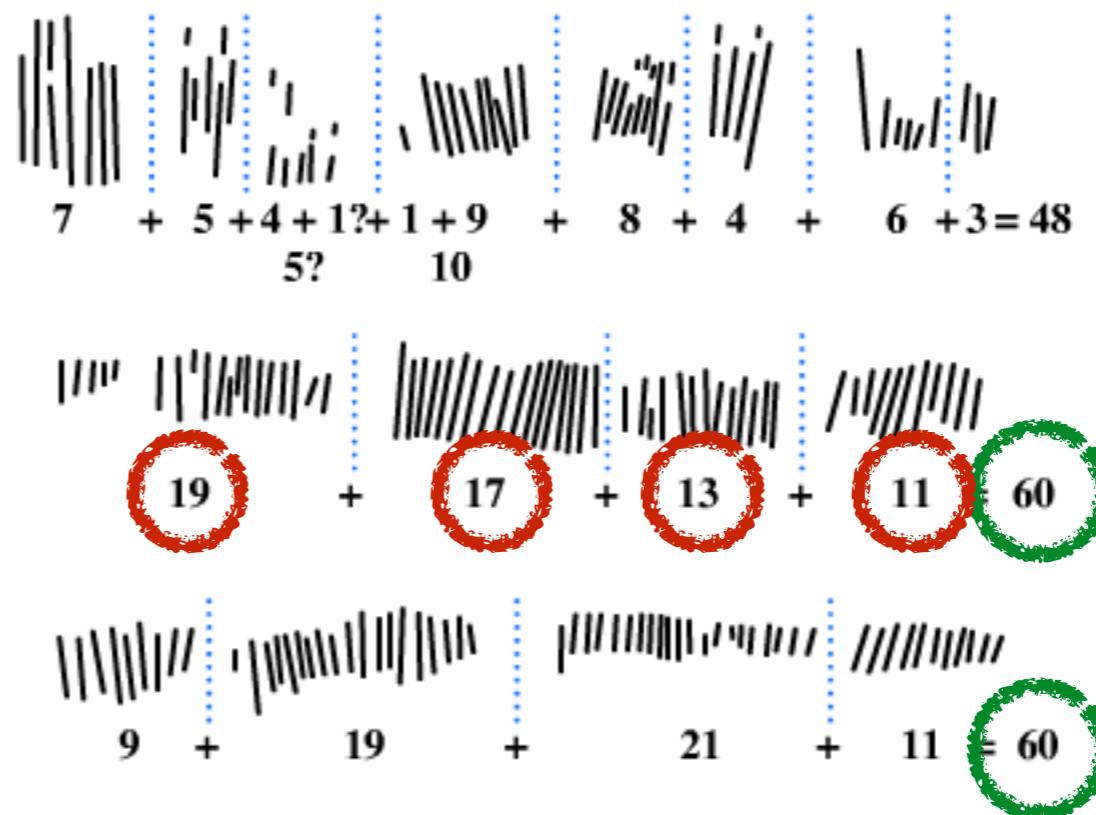


$$\begin{array}{r} \begin{array}{c} | \\ | \\ | \\ | \\ | \\ | \\ | \end{array} \quad \begin{array}{c} | \\ | \\ | \\ | \\ | \\ | \\ | \\ | \end{array} \quad \begin{array}{c} | \\ | \\ | \\ | \\ | \end{array} \quad \begin{array}{c} | \\ | \\ | \\ | \\ | \\ | \\ | \end{array} \quad \begin{array}{c} | \\ | \\ | \\ | \\ | \end{array} \quad \begin{array}{c} | \\ | \\ | \\ | \\ | \end{array} \\ 7 \quad + \quad 5 + 4 + 1? + 1 + 9 \quad + \quad 8 \quad + \quad 4 \quad + \quad 6 \quad + 3 = 48 \\ 5? \quad \quad \quad 10 \end{array}$$
$$\begin{array}{r} \begin{array}{c} | \\ | \\ | \\ | \\ | \\ | \\ | \\ | \end{array} \quad \begin{array}{c} | \\ | \\ | \\ | \\ | \\ | \\ | \\ | \end{array} \quad \begin{array}{c} | \\ | \\ | \\ | \\ | \\ | \\ | \end{array} \quad \begin{array}{c} | \\ | \\ | \\ | \\ | \end{array} \\ 19 \quad + \quad 17 \quad + \quad 13 \quad + \quad 11 = 60 \end{array}$$
$$\begin{array}{r} \begin{array}{c} | \\ | \\ | \\ | \\ | \\ | \\ | \end{array} \quad \begin{array}{c} | \\ | \\ | \\ | \\ | \\ | \\ | \end{array} \quad \begin{array}{c} | \\ | \\ | \\ | \\ | \\ | \\ | \end{array} \quad \begin{array}{c} | \\ | \\ | \\ | \\ | \end{array} \\ 9 \quad + \quad 19 \quad + \quad 21 \quad + \quad 11 = 60 \end{array}$$


# Ishango Bone

- From ~18,000 BC.
- Has 3 columns, with 48, 60 and 60 notches.




# Ishango Bone

- From ~18,000 BC.
- Has 3 columns, with 48, 60 and 60 notches.




# Ishango Bone

- From ~18,000 BC.
- Has 3 columns, with 48, 60 and 60 notches.



Both bones are the fibula of baboons!

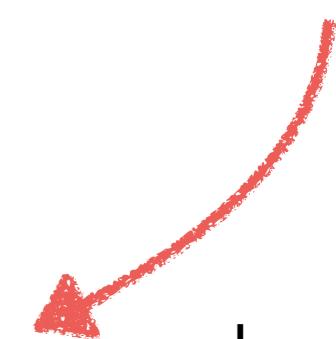
# Ishango Bone



# When Should A Math History Course Begin?

# When Should A Math History Course Begin?

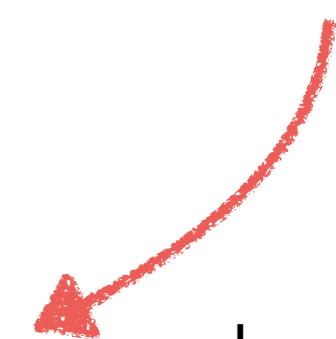
- And how much should one focus on ancient, intermediate and modern math?


# When Should A Math History Course Begin?

- And how much should one focus on ancient, intermediate and modern math?
- We will start with ancient counting by humans, and go all the way to the 21st century.

# When Should A Math History Course Begin?

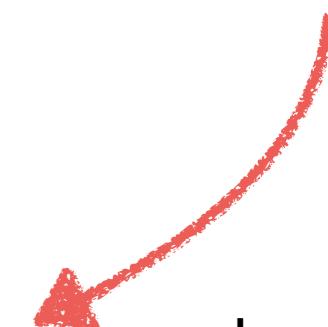
- And how much should one focus on ancient, intermediate and modern math?
- We will start with ancient counting by humans, and go all the way to the 21st century.


Note:  
Many  
animals  
"count"!



# When Should A Math History Course Begin?

- And how much should one focus on ancient, intermediate and modern math?
- We will start with ancient counting by humans, and go all the way to the 21st century.
- First three chapters discuss ancient math.


Note:  
Many  
animals  
"count"!



# When Should A Math History Course Begin?

- And how much should one focus on ancient, intermediate and modern math?
- We will start with ancient counting by humans, and go all the way to the 21st century.
- First three chapters discuss ancient math.
- Last seven chapters begin with an early idea, and track its evolution to modern theorems and major fields of study. This creates a natural balance between eras.

Note:  
Many  
animals  
"count"!



# How Humans Count

# How Humans Count

Objects:

# How Humans Count

Objects:

- Fingers. (Many methods)

# How Humans Count

Objects:

- Fingers. (Many methods)
- Tally marks. (Congo, Czech, etc in Stone Age.)

# How Humans Count

Objects:

- Fingers. (Many methods)
- Tally marks. (Congo, Czech, etc in Stone Age.)
- Knots in rope. (Peru, China)

# How Humans Count

Objects:

- Fingers. (Many methods)
- Tally marks. (Congo, Czech, etc in Stone Age.)
- Knots in rope. (Peru, China)
- Shells, beads. (Native Americans)

# Number Bases

# Number Bases

- Base 10 (decimal system): Now, almost everyone

# Number Bases

- Base 10 (decimal system): Now, almost everyone
- Base 20 (vegesimal system): E.g., Mayans, Aztecs

# Number Bases

- Base 10 (decimal system): Now, almost everyone
- Base 20 (vegesimal system): E.g., Mayans, Aztecs
- Base 5: E.g., Aboriginal Australians, Luiseño Native Americans

# Number Bases

- Base 10 (decimal system): Now, almost everyone
- Base 20 (vegesimal system): E.g., Mayans, Aztecs
- Base 5: E.g., Aboriginal Australians, Luiseño Native Americans
- Base 60 (sexagesimal system): E.g., Babylonians

# Number Bases

- Base 10 (decimal system): Now, almost everyone
- Base 20 (vegesimal system): E.g., Mayans, Aztecs
- Base 5: E.g., Aboriginal Australians, Luiseño Native Americans
- Base 60 (sexagesimal system): E.g., Babylonians
- Base 4: E.g., Papua New Guinea, my son at 22 months

# Number Bases

- Base 10 (decimal system): Now, almost everyone
- Base 20 (vegesimal system): E.g., Mayans, Aztecs
- Base 5: E.g., Aboriginal Australians, Luiseño Native Americans
- Base 60 (sexagesimal system): E.g., Babylonians
- Base 4: E.g., Papua New Guinea, my son at 22 months
- Base 2 (binary system): E.g., Computers

# Number Base Notation

# Number Base Notation

**Notation.** When we write a number like 3,835, that is notation for

$$3 \cdot 1,000 + 8 \cdot 100 + 3 \cdot 10 + 5$$

# Number Base Notation

**Notation.** When we write a number like 3,835, that is notation for

$$\begin{aligned} & 3 \cdot 1,000 + 8 \cdot 100 + 3 \cdot 10 + 5 \\ = & 3 \cdot 10^3 + 8 \cdot 10^2 + 3 \cdot 10^1 + 5 \cdot 10^0. \end{aligned}$$

# Number Base Notation

**Notation.** When we write a number like 3,835, that is notation for

$$\begin{aligned} & 3 \cdot 1,000 + 8 \cdot 100 + 3 \cdot 10 + 5 \\ &= 3 \cdot 10^3 + 8 \cdot 10^2 + 3 \cdot 10^1 + 5 \cdot 10^0. \end{aligned}$$

**Notation.** A number in base  $b$  is expressed as

$$(a_k a_{k-1} \dots a_2 a_1 a_0)_b,$$

where each  $a_i$  is an integer between 0 and  $b - 1$ .

# Number Base Notation

**Notation.** When we write a number like 3,835, that is notation for

$$\begin{aligned} & 3 \cdot 1,000 + 8 \cdot 100 + 3 \cdot 10 + 5 \\ &= 3 \cdot 10^3 + 8 \cdot 10^2 + 3 \cdot 10^1 + 5 \cdot 10^0. \end{aligned}$$

**Notation.** A number in base  $b$  is expressed as

$$(a_k a_{k-1} \dots a_2 a_1 a_0)_b,$$

where each  $a_i$  is an integer between 0 and  $b - 1$ .

Converting the number  $(a_k a_{k-1} \dots a_2 a_1 a_0)_b$  to base 10 gives

$$a_k b^k + a_{k-1} b^{k-1} + \dots + a_2 b^2 + a_1 b^1 + a_0 \cdot b^0.$$

# Practice

# Practice

**Example.**  $(123)_4$  is a base 4 number.

# Practice

**Example.**  $(123)_4$  is a base 4 number.

$(11010)_2$  is a base 2 number.

# Practice

**Example.**  $(123)_4$  is a base 4 number.

$(11010)_2$  is a base 2 number.

$(11010)_3$  is a base 3 number.

# Practice

**Example.** Write  $(123)_4$  in base 10.

# Practice

**Example.** Write  $(123)_4$  in base 10.

**Solution.**

$$1 \cdot 4^2 + 2 \cdot 4^1 + 3 \cdot 4^0$$

# Practice

**Example.** Write  $(123)_4$  in base 10.

**Solution.**

$$1 \cdot 4^2 + 2 \cdot 4^1 + 3 \cdot 4^0$$

$$= 16 + 8 + 3$$

# Practice

**Example.** Write  $(123)_4$  in base 10.

**Solution.**

$$1 \cdot 4^2 + 2 \cdot 4^1 + 3 \cdot 4^0$$

$$= 16 + 8 + 3$$

$$= 27$$

# Practice

# Practice

**Example.** Write the (base 10) number 34 in base 3.

# Practice

**Example.** Write the (base 10) number 34 in base 3.

**Solution.** The powers of 3 that are less than 34 are 27, 9, 3 and 1.

# Practice

**Example.** Write the (base 10) number 34 in base 3.

**Solution.** The powers of 3 that are less than 34 are 27, 9, 3 and 1. After 1 copy of 27, we are left with

# Practice

**Example.** Write the (base 10) number 34 in base 3.

**Solution.** The powers of 3 that are less than 34 are 27, 9, 3 and 1. After 1 copy of 27, we are left with

$$34 - 27 = 7.$$

# Practice

**Example.** Write the (base 10) number 34 in base 3.

**Solution.** The powers of 3 that are less than 34 are 27, 9, 3 and 1. After 1 copy of 27, we are left with

$$34 - 27 = 7.$$

We don't need any 9s. After 2 copies of 3, we are left with

# Practice

**Example.** Write the (base 10) number 34 in base 3.

**Solution.** The powers of 3 that are less than 34 are 27, 9, 3 and 1. After 1 copy of 27, we are left with

$$34 - 27 = 7.$$

We don't need any 9s. After 2 copies of 3, we are left with

$$7 - 2 \cdot 3 = 1.$$

# Practice

**Example.** Write the (base 10) number 34 in base 3.

**Solution.** The powers of 3 that are less than 34 are 27, 9, 3 and 1. After 1 copy of 27, we are left with

$$34 - 27 = 7.$$

We don't need any 9s. After 2 copies of 3, we are left with

$$7 - 2 \cdot 3 = 1.$$

Then, we need 1 copy of 1. In summary:

# Practice

**Example.** Write the (base 10) number 34 in base 3.

**Solution.** The powers of 3 that are less than 34 are 27, 9, 3 and 1. After 1 copy of 27, we are left with

$$34 - 27 = 7.$$

We don't need any 9s. After 2 copies of 3, we are left with

$$7 - 2 \cdot 3 = 1.$$

Then, we need 1 copy of 1. In summary:

$$34 = 1 \cdot 3^3 + 0 \cdot 3^2 + 2 \cdot 3^1 + 1 \cdot 3^0$$

# Practice

**Example.** Write the (base 10) number 34 in base 3.

**Solution.** The powers of 3 that are less than 34 are 27, 9, 3 and 1. After 1 copy of 27, we are left with

$$34 - 27 = 7.$$

We don't need any 9s. After 2 copies of 3, we are left with

$$7 - 2 \cdot 3 = 1.$$

Then, we need 1 copy of 1. In summary:

$$34 = 1 \cdot 3^3 + 0 \cdot 3^2 + 2 \cdot 3^1 + 1 \cdot 3^0$$

So,

# Practice

**Example.** Write the (base 10) number 34 in base 3.

**Solution.** The powers of 3 that are less than 34 are 27, 9, 3 and 1. After 1 copy of 27, we are left with

$$34 - 27 = 7.$$

We don't need any 9s. After 2 copies of 3, we are left with

$$7 - 2 \cdot 3 = 1.$$

Then, we need 1 copy of 1. In summary:

$$34 = 1 \cdot 3^3 + 0 \cdot 3^2 + 2 \cdot 3^1 + 1 \cdot 3^0$$

So,

$$(34)_{10} = (1021)_3.$$

# 4 Ways People Write Numbers

# 4 Ways People Write Numbers

- 1. Positional System: Each *position* is a power of 10.

# 4 Ways People Write Numbers

- 1. Positional System: Each *position* is a power of 10.

Example:  $3,854 = 3 \cdot 1,000 + 8 \cdot 100 + 5 \cdot 10 + 4$

# 4 Ways People Write Numbers

- 1. Positional System: Each *position* is a power of 10.

Example:  $3,854 = 3 \cdot 1,000 + 8 \cdot 100 + 5 \cdot 10 + 4$

$$= 3 \cdot 10^3 + 8 \cdot 10^2 + 5 \cdot 10^1 + 4$$

# 4 Ways People Write Numbers

- 1. Positional System: Each *position* is a power of 10.

Example:  $3,854 = 3 \cdot 1,000 + 8 \cdot 100 + 5 \cdot 10 + 4$

$$= 3 \cdot 10^3 + 8 \cdot 10^2 + 5 \cdot 10^1 + 4$$

Second example, from your homework: Babylonians

# 4 Ways People Write Numbers

- 1. Positional System: Each *position* is a power of 10.

Example:  $3,854 = 3 \cdot 1,000 + 8 \cdot 100 + 5 \cdot 10 + 4$

$$= 3 \cdot 10^3 + 8 \cdot 10^2 + 5 \cdot 10^1 + 4$$

Second example, from your homework: Babylonians

- 2. Multiplicative Grouping System: Have a character for each power of 10

# 4 Ways People Write Numbers

- 1. Positional System: Each *position* is a power of 10.

Example:  $3,854 = 3 \cdot 1,000 + 8 \cdot 100 + 5 \cdot 10 + 4$

$$= 3 \cdot 10^3 + 8 \cdot 10^2 + 5 \cdot 10^1 + 4$$

Second example, from your homework: Babylonians

- 2. Multiplicative Grouping System: Have a character for each power of 10

Example: Chinese-Japanese numeral system

# 4 Ways People Write Numbers

|        |          |            |             |
|--------|----------|------------|-------------|
| 1 = 一  | 10 = 十   | 100 = 一百   | 1,000 = 一千  |
| 2 = 二  | 20 = 二十  | 200 = 二百   | 2,000 = 二千  |
| 3 = 三  | 30 = 三十  | 300 = 三百   | 3,000 = 三千  |
| 4 = 四  | 40 = 四十  | 400 = 四百   | 4,000 = 四千  |
| 5 = 五  | 50 = 五十  | 500 = 五百   | 5,000 = 五千  |
| 6 = 六  | 60 = 六十  | 600 = 六百   | 6,000 = 六千  |
| 7 = 七  | 70 = 七十  | 700 = 七百   | 7,000 = 七千  |
| 8 = 八  | 80 = 八十  | 800 = 八百   | 8,000 = 八千  |
| 9 = 九  | 90 = 九十  | 900 = 九百   | 9,000 = 九千  |
| 10 = 十 | 100 = 一百 | 1,000 = 一千 | 10,000 = 一万 |

Example: Chinese-Japanese numeral system

# 4 Ways People Write Numbers

|        |          |            |             |
|--------|----------|------------|-------------|
| 1 = 一  | 10 = 十   | 100 = 一百   | 1,000 = 一千  |
| 2 = 二  | 20 = 二十  | 200 = 二百   | 2,000 = 二千  |
| 3 = 三  | 30 = 三十  | 300 = 三百   | 3,000 = 三千  |
| 4 = 四  | 40 = 四十  | 400 = 四百   | 4,000 = 四千  |
| 5 = 五  | 50 = 五十  | 500 = 五百   | 5,000 = 五千  |
| 6 = 六  | 60 = 六十  | 600 = 六百   | 6,000 = 六千  |
| 7 = 七  | 70 = 七十  | 700 = 七百   | 7,000 = 七千  |
| 8 = 八  | 80 = 八十  | 800 = 八百   | 8,000 = 八千  |
| 9 = 九  | 90 = 九十  | 900 = 九百   | 9,000 = 九千  |
| 10 = 十 | 100 = 一百 | 1,000 = 一千 | 10,000 = 一万 |

Example: Chinese-Japanese numeral system

$$5,062 = 5 \cdot 1,000 + 6 \cdot 10 + 2$$

# 4 Ways People Write Numbers

|        |          |            |             |
|--------|----------|------------|-------------|
| 1 = 一  | 10 = 十   | 100 = 一百   | 1,000 = 一千  |
| 2 = 二  | 20 = 二十  | 200 = 二百   | 2,000 = 二千  |
| 3 = 三  | 30 = 三十  | 300 = 三百   | 3,000 = 三千  |
| 4 = 四  | 40 = 四十  | 400 = 四百   | 4,000 = 四千  |
| 5 = 五  | 50 = 五十  | 500 = 五百   | 5,000 = 五千  |
| 6 = 六  | 60 = 六十  | 600 = 六百   | 6,000 = 六千  |
| 7 = 七  | 70 = 七十  | 700 = 七百   | 7,000 = 七千  |
| 8 = 八  | 80 = 八十  | 800 = 八百   | 8,000 = 八千  |
| 9 = 九  | 90 = 九十  | 900 = 九百   | 9,000 = 九千  |
| 10 = 十 | 100 = 一百 | 1,000 = 一千 | 10,000 = 一万 |

Example: Chinese-Japanese numeral system

$$5,062 = 5 \cdot 1,000 + 6 \cdot 10 + 2$$

= 五千六十二

# 4 Ways People Write Numbers

# 4 Ways People Write Numbers

- 3. Simple Grouping System: Add everything up.

# 4 Ways People Write Numbers

- 3. Simple Grouping System: Add everything up.

Example: Egyptian hieroglyphs

# 4 Ways People Write Numbers

- 3. Simple Grouping System: Add everything up.

$1 = |$  ,  $10 = \cap$  ,  $100 = \wp$  ,  $1,000 = \text{I}$

$10,000 = \{\}$  ,  $100,000 = \wp$  ,  $1,000,000 = \text{I}$

# 4 Ways People Write Numbers

- 3. Simple Grouping System: Add everything up.

$1 = |$  ,  $10 = \cap$  ,  $100 = \wp$  ,  $1,000 = \text{I}$

$10,000 = \{\}$  ,  $100,000 = \wp$  ,  $1,000,000 = \text{I}$

321

# 4 Ways People Write Numbers

- 3. Simple Grouping System: Add everything up.

$1 = |$  ,  $10 = \cap$  ,  $100 = \wp$  ,  $1,000 = \text{I}$

$10,000 = \{\}$  ,  $100,000 = \wp$  ,  $1,000,000 = \text{I}$

$321 = \wp\wp\wp\cap\cap|$

# 4 Ways People Write Numbers

- 3. Simple Grouping System: Add everything up.

$1 = |$  ,  $10 = \cap$  ,  $100 = \wp$  ,  $1,000 = \text{I}$

$10,000 = \{\}$  ,  $100,000 = \wp\wp$  ,  $1,000,000 = \text{I}\text{I}$

$321 = \wp\wp\wp \cap\cap |$   
 $= \wp\wp\wp | \cap\cap$

# 4 Ways People Write Numbers

- 3. Simple Grouping System: Add everything up.

$1 = |$  ,  $10 = \cap$  ,  $100 = \wp$  ,  $1,000 = \text{I}$

$10,000 = \{\$  ,  $100,000 = \wp$  ,  $1,000,000 = \text{I}$

$321 = \wp\wp\wp \cap\cap |$

$= \wp\wp\wp | \cap\cap$

$= \wp\cap\wp | \wp\cap$

# 4 Ways People Write Numbers

- 3. Simple Grouping System: Add everything up.

$1 = |$  ,  $10 = \cap$  ,  $100 = \varrho$  ,  $1,000 = \text{I}$

$10,000 = \text{J}$  ,  $100,000 = \text{J}$  ,  $1,000,000 = \text{J}$

$321 = \varrho\varrho\varrho \cap\cap |$   
 $= \varrho\varrho\varrho | \cap\cap$   
 $= \varrho\cap\varrho | \varrho\cap$

- Another example: Roman numerals.

# 4 Ways People Write Numbers

- 3. Simple Grouping System: Add everything up.

$1 = |$  ,  $10 = \cap$  ,  $100 = \varphi$  ,  $1,000 = \text{I}$

$10,000 = \text{J}$  ,  $100,000 = \text{B}$  ,  $1,000,000 = \text{A}$

$321 = \varphi\varphi\varphi \cap\cap |$   
 $= \varphi\varphi\varphi | \cap\cap$   
 $= \varphi\cap\varphi | \varphi\cap$

- Another example: Roman numerals.
- Except for the more modern subtraction rules

# 4 Ways People Write Numbers

# 4 Ways People Write Numbers

- 4. Ciphered systems: It's... complicated. For a base  $b$ , we need symbols for

# 4 Ways People Write Numbers

- 4. Ciphered systems: It's... complicated. For a base  $b$ , we need symbols for

$$1, 2, \dots, b - 1$$
$$b, 2b, \dots, (b - 1)b$$
$$b^2, 2b^2, \dots, (b - 1)b^2$$
$$b^3, 2b^3, \dots, (b - 1)b^3$$
$$\vdots$$

# 4 Ways People Write Numbers

- 4. Ciphered systems: It's... complicated. For a base  $b$ , we need symbols for

$$1, 2, \dots, b - 1$$
$$b, 2b, \dots, (b - 1)b$$
$$b^2, 2b^2, \dots, (b - 1)b^2$$
$$b^3, 2b^3, \dots, (b - 1)b^3$$
$$\vdots$$

Example: Ionic Greek system

# 4 Ways People Write Numbers

|                             |                           |                            |
|-----------------------------|---------------------------|----------------------------|
| $1 = \alpha$ (alpha)        | $10 = \iota$ (iota)       | $100 = \rho$ (rho)         |
| $2 = \beta$ (beta)          | $20 = \kappa$ (kappa)     | $200 = \sigma$ (sigma)     |
| $3 = \gamma$ (gamma)        | $30 = \lambda$ (lambda)   | $300 = \tau$ (tau)         |
| $4 = \delta$ (delta)        | $40 = \mu$ (mu)           | $400 = \upsilon$ (upsilon) |
| $5 = \varepsilon$ (epsilon) | $50 = \nu$ (nu)           | $500 = \phi$ (phi)         |
| $6 = \varsigma$ (vau)       | $60 = \xi$ (xi)           | $600 = \chi$ (chi)         |
| $7 = \zeta$ (zeta)          | $70 = \omicron$ (omicron) | $700 = \psi$ (psi)         |
| $8 = \eta$ (eta)            | $80 = \pi$ (pi)           | $800 = \omega$ (omega)     |
| $9 = \theta$ (theta)        | $90 = \kappa$ (koppa)     | $900 = \lambda$ (sampi)    |

Example: Ionic Greek system

Question: Which  
system is best?

# Zero



# Zero



The Indians and the Mayans were the two civilizations to discover zero and recognize its deep potential as:



# Zero



The Indians and the Mayans were the two civilizations to discover zero and recognize its deep potential as:

- A symbol



# Zero



The Indians and the Mayans were the two civilizations to discover zero and recognize its deep potential as:

- A symbol
- A number



# Zero



The Indians and the Mayans were the two civilizations to discover zero and recognize its deep potential as:

- A symbol
- A number
- A magnitude



# Zero



The Indians and the Mayans were the two civilizations to discover zero and recognize its deep potential as:

- A symbol
- A number
- A magnitude
- A direction separator



# Zero



The Indians and the Mayans were the two civilizations to discover zero and recognize its deep potential as:

- A symbol
- A number
- A magnitude
- A direction separator
- A place-holder



# Zero



The Indians and the Mayans were the two civilizations to discover zero and recognize its deep potential as:

- A symbol
- A number
- A magnitude
- A direction separator
- A place-holder
- An idea



# Zero



The Indians and the Mayans were the two civilizations to discover zero and recognize its deep potential as:

- A symbol
- A number
- A magnitude
- A direction separator
- A place-holder
- An idea

(This is a big deal)



# Zero



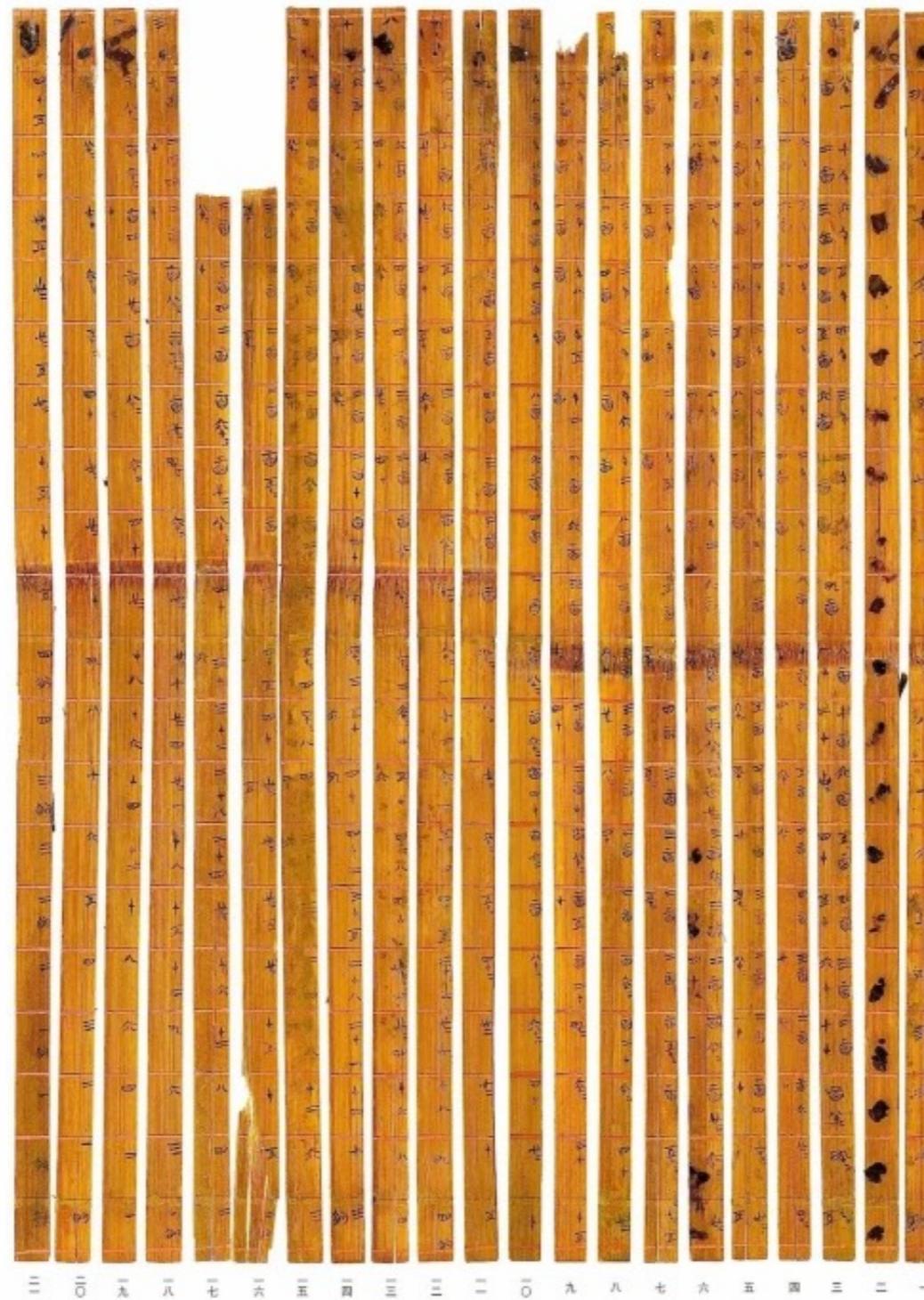
The Indians and the Mayans were the two civilizations to discover zero and recognize its deep potential as:

- A symbol
- A number
- A magnitude
- A direction separator
- A place-holder
- An idea

(This is a big deal)

In other cultures, understanding was incomplete.

# Video: Bees




# Video: Bees



Think Like A  
Math Historian

# Think Like A Math Historian



# Think Like A Math Historian

|     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |     |     |      |      |      |      |      |      |      |      |     |    |      |      |      |      |      |      |      |      |     |      |
|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|-----|------|------|------|------|------|------|------|------|-----|----|------|------|------|------|------|------|------|------|-----|------|
| 8   | 5    | 450  | 400  | 350  | 300  | 250  | 200  | 150  | 100  | 6400 | 5600 | 4800 | 4000 | 3200 | 2400 | 1600 | 1000 | 810 | 900 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 720 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 4   | 4    | 360  | 320  | 300  | 280  | 240  | 200  | 180  | 160  | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 50 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 80  | 320  | 280  | 240  | 200  | 180  | 160  | 150  | 140  | 120  | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 250 | 200  | 180  | 160  | 150  | 140  | 120  | 100  | 90   | 80   | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 320 | 250  | 220  | 200  | 180  | 160  | 140  | 120  | 100  | 80   | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 400 | 350  | 320  | 280  | 240  | 200  | 180  | 160  | 150  | 120  | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 480 | 420  | 360  | 320  | 280  | 240  | 200  | 180  | 160  | 140  | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 560 | 500  | 420  | 360  | 320  | 280  | 240  | 200  | 180  | 160  | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 640 | 560  | 480  | 420  | 360  | 320  | 280  | 240  | 200  | 180  | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 720 | 640  | 560  | 480  | 420  | 360  | 320  | 280  | 240  | 200  | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 80  | 720  | 640  | 560  | 480  | 420  | 360  | 320  | 280  | 240  | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 88  | 800  | 720  | 640  | 560  | 480  | 420  | 360  | 320  | 280  | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 96  | 900  | 820  | 740  | 660  | 580  | 500  | 420  | 340  | 260  | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 104 | 1000 | 920  | 840  | 760  | 680  | 600  | 520  | 440  | 360  | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 112 | 1100 | 1020 | 940  | 860  | 780  | 700  | 620  | 540  | 460  | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 120 | 1200 | 1120 | 1040 | 960  | 880  | 800  | 720  | 640  | 560  | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 128 | 1280 | 1200 | 1120 | 1040 | 960  | 880  | 800  | 720  | 640  | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 136 | 1360 | 1280 | 1200 | 1120 | 1040 | 960  | 880  | 800  | 720  | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 144 | 1440 | 1360 | 1280 | 1200 | 1120 | 1040 | 960  | 880  | 800  | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 152 | 1520 | 1440 | 1360 | 1280 | 1200 | 1120 | 1040 | 960  | 880  | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 160 | 1600 | 1520 | 1440 | 1360 | 1280 | 1200 | 1120 | 1040 | 960  | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 168 | 1680 | 1600 | 1520 | 1440 | 1360 | 1280 | 1200 | 1120 | 1040 | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 1200 | 900 | 8100 |
| 176 | 1760 | 1680 | 1600 | 1520 | 1440 | 1360 | 1280 | 1200 | 1120 | 2000 | 1800 | 1600 | 1400 | 1200 | 1000 | 800  | 600  | 450 | 500 | 3600 | 3200 | 2800 | 2400 | 2000 | 1600 | 1200 | 1000 | 810 | 60 | 5400 | 4800 | 4200 | 3600 | 3000 | 2400 | 1800 | 120  |     |      |

# Think Like A Math Historian

| 1/2              | 1   | 2   | 3                | 4   | 5                | 6   | 7                | 8   | 9                | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |     |
|------------------|-----|-----|------------------|-----|------------------|-----|------------------|-----|------------------|-----|------|------|------|------|------|------|------|------|-----|
| 45               | 90  | 180 | 270              | 360 | 450              | 540 | 630              | 720 | 810              | 900 | 1800 | 2700 | 3600 | 4500 | 5400 | 6300 | 7200 | 8100 | 90  |
| 40               | 80  | 160 | 240              | 320 | 400              | 480 | 560              | 640 | 720              | 800 | 1600 | 2400 | 3200 | 4000 | 4800 | 5600 | 6400 | 7200 | 80  |
| 35               | 70  | 140 | 210              | 280 | 350              | 420 | 490              | 560 | 630              | 700 | 1400 | 2100 | 2800 | 3500 | 4200 | 4900 | 5600 | 6300 | 70  |
| 30               | 60  | 120 | 180              | 240 | 300              | 360 | 420              | 480 | 540              | 600 | 1200 | 1800 | 2400 | 3000 | 3600 | 4200 | 4800 | 5400 | 60  |
| 25               | 50  | 100 | 150              | 200 | 250              | 300 | 350              | 400 | 450              | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 50  |
| 20               | 40  | 80  | 120              | 160 | 200              | 240 | 280              | 320 | 360              | 400 | 800  | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600 | 40  |
| 15               | 30  | 60  | 90               | 120 | 150              | 180 | 210              | 240 | 270              | 300 | 600  | 900  | 1200 | 1500 | 1800 | 2100 | 2400 | 2700 | 30  |
| 10               | 20  | 40  | 60               | 80  | 100              | 120 | 140              | 160 | 180              | 200 | 400  | 600  | 800  | 1000 | 1200 | 1400 | 1600 | 1800 | 20  |
| 5                | 10  | 20  | 30               | 40  | 50               | 60  | 70               | 80  | 90               | 100 | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 10  |
| 4 <sup>1/2</sup> | 9   | 18  | 27               | 36  | 45               | 54  | 63               | 72  | 81               | 90  | 180  | 270  | 360  | 450  | 540  | 630  | 720  | 810  | 9   |
| 4                | 8   | 16  | 24               | 32  | 40               | 48  | 56               | 64  | 72               | 80  | 160  | 240  | 320  | 400  | 480  | 560  | 640  | 720  | 8   |
| 3 <sup>1/2</sup> | 7   | 14  | 21               | 28  | 35               | 42  | 49               | 56  | 63               | 70  | 140  | 210  | 280  | 350  | 420  | 490  | 560  | 630  | 7   |
| 3                | 6   | 12  | 18               | 24  | 30               | 36  | 42               | 48  | 54               | 60  | 120  | 180  | 240  | 300  | 360  | 420  | 480  | 540  | 6   |
| 2 <sup>1/2</sup> | 5   | 10  | 15               | 20  | 25               | 30  | 35               | 40  | 45               | 50  | 100  | 150  | 200  | 250  | 300  | 350  | 400  | 450  | 5   |
| 2                | 4   | 8   | 12               | 16  | 20               | 24  | 28               | 32  | 36               | 40  | 80   | 120  | 160  | 200  | 240  | 280  | 320  | 360  | 4   |
| 1 <sup>1/2</sup> | 3   | 6   | 9                | 12  | 15               | 18  | 21               | 24  | 27               | 30  | 60   | 90   | 120  | 150  | 180  | 210  | 240  | 270  | 3   |
| 1                | 2   | 4   | 6                | 8   | 10               | 12  | 14               | 16  | 18               | 20  | 40   | 60   | 80   | 100  | 120  | 140  | 160  | 180  | 2   |
| 1 <sup>1/2</sup> | 1   | 2   | 3                | 4   | 5                | 6   | 7                | 8   | 9                | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 1   |
| 1/4              | 1/2 | 1   | 1 <sup>1/2</sup> | 2   | 2 <sup>1/2</sup> | 3   | 3 <sup>1/2</sup> | 4   | 4 <sup>1/2</sup> | 5   | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | 1/2 |

# Think Like A Math Historian

| 1/2              | 1   | 2   | 3                | 4   | 5                | 6   | 7                | 8   | 9                | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |     |
|------------------|-----|-----|------------------|-----|------------------|-----|------------------|-----|------------------|-----|------|------|------|------|------|------|------|------|-----|
| 45               | 90  | 180 | 270              | 360 | 450              | 540 | 630              | 720 | 810              | 900 | 1800 | 2700 | 3600 | 4500 | 5400 | 6300 | 7200 | 8100 | 90  |
| 40               | 80  | 160 | 240              | 320 | 400              | 480 | 560              | 640 | 720              | 800 | 1600 | 2400 | 3200 | 4000 | 4800 | 5600 | 6400 | 7200 | 80  |
| 35               | 70  | 140 | 210              | 280 | 350              | 420 | 490              | 560 | 630              | 700 | 1400 | 2100 | 2800 | 3500 | 4200 | 4900 | 5600 | 6300 | 70  |
| 30               | 60  | 120 | 180              | 240 | 300              | 360 | 420              | 480 | 540              | 600 | 1200 | 1800 | 2400 | 3000 | 3600 | 4200 | 4800 | 5400 | 60  |
| 25               | 50  | 100 | 150              | 200 | 250              | 300 | 350              | 400 | 450              | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 50  |
| 20               | 40  | 80  | 120              | 160 | 200              | 240 | 280              | 320 | 360              | 400 | 800  | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600 | 40  |
| 15               | 30  | 60  | 90               | 120 | 150              | 180 | 210              | 240 | 270              | 300 | 600  | 900  | 1200 | 1500 | 1800 | 2100 | 2400 | 2700 | 30  |
| 10               | 20  | 40  | 60               | 80  | 100              | 120 | 140              | 160 | 180              | 200 | 400  | 600  | 800  | 1000 | 1200 | 1400 | 1600 | 1800 | 20  |
| 5                | 10  | 20  | 30               | 40  | 50               | 60  | 70               | 80  | 90               | 100 | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 10  |
| 4 <sup>1/2</sup> | 9   | 18  | 27               | 36  | 45               | 54  | 63               | 72  | 81               | 90  | 180  | 270  | 360  | 450  | 540  | 630  | 720  | 810  | 9   |
| 4                | 8   | 16  | 24               | 32  | 40               | 48  | 56               | 64  | 72               | 80  | 160  | 240  | 320  | 400  | 480  | 560  | 640  | 720  | 8   |
| 3 <sup>1/2</sup> | 7   | 14  | 21               | 28  | 35               | 42  | 49               | 56  | 63               | 70  | 140  | 210  | 280  | 350  | 420  | 490  | 560  | 630  | 7   |
| 3                | 6   | 12  | 18               | 24  | 30               | 36  | 42               | 48  | 54               | 60  | 120  | 180  | 240  | 300  | 360  | 420  | 480  | 540  | 6   |
| 2 <sup>1/2</sup> | 5   | 10  | 15               | 20  | 25               | 30  | 35               | 40  | 45               | 50  | 100  | 150  | 200  | 250  | 300  | 350  | 400  | 450  | 5   |
| 2                | 4   | 8   | 12               | 16  | 20               | 24  | 28               | 32  | 36               | 40  | 80   | 120  | 160  | 200  | 240  | 280  | 320  | 360  | 4   |
| 1 <sup>1/2</sup> | 3   | 6   | 9                | 12  | 15               | 18  | 21               | 24  | 27               | 30  | 60   | 90   | 120  | 150  | 180  | 210  | 240  | 270  | 3   |
| 1                | 2   | 4   | 6                | 8   | 10               | 12  | 14               | 16  | 18               | 20  | 40   | 60   | 80   | 100  | 120  | 140  | 160  | 180  | 2   |
| 1 <sup>1/2</sup> | 1   | 2   | 3                | 4   | 5                | 6   | 7                | 8   | 9                | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 1   |
| 1/4              | 1/2 | 1   | 1 <sup>1/2</sup> | 2   | 2 <sup>1/2</sup> | 3   | 3 <sup>1/2</sup> | 4   | 4 <sup>1/2</sup> | 5   | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | 1/2 |

*We will come back to this soon.*

# Arithmetic

# Multiplication Tables

# Multiplication Tables

- After counting comes arithmetic. Simple addition and subtraction could be done in head, on fingers, or with simple tools. Multiplication was probably much harder.

# Multiplication Tables

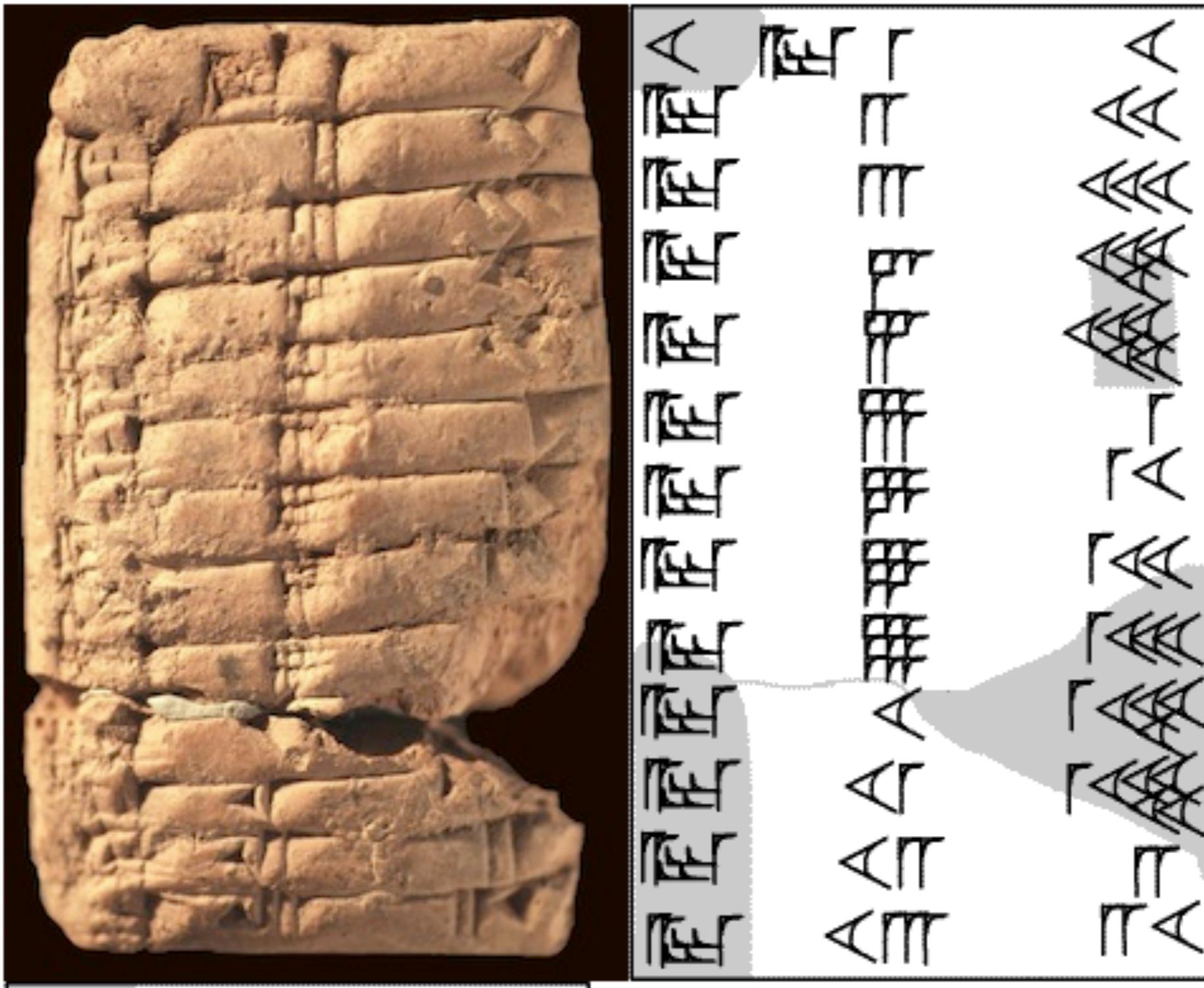
- After counting comes arithmetic. Simple addition and subtraction could be done in head, on fingers, or with simple tools. Multiplication was probably much harder.
- First known multiplication table is a 4,000 year old Babylonian (base 60) multiplication table.

# Multiplication Tables

- After counting and subtracting or with simple multiplication was much harder.
- First known multiplication table was Babylonian (but not a table).
- c. Simple addition was in head, on fingers, ion was probably
- is a 4,000 year old multiplication table.



MS 3866  
Multiplication table for 1.12(=72).  
Babylonia, 19th c. BC


# Multiplication Tables

- After counting comes arithmetic. Simple addition and subtraction could be done in head, on fingers, or with simple tools. Multiplication was probably much harder.
- First known multiplication table is a 4,000 year old Babylonian (base 60) multiplication table.

# Multiplication Tables

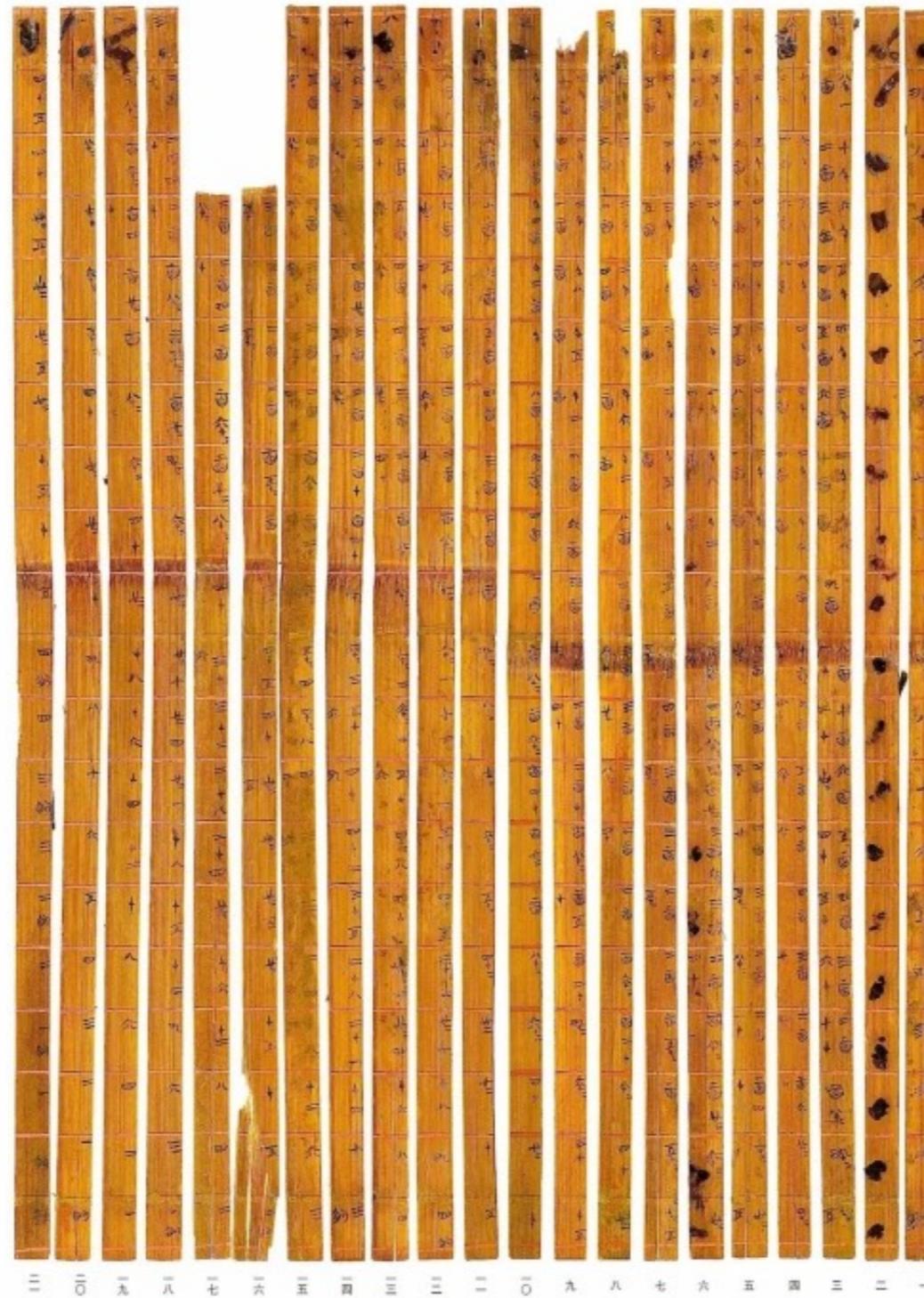
- After  
and  
or  
mu
- First  
Ba

on  
lers,  
y  
old



# Multiplication Tables

- After counting comes arithmetic. Simple addition and subtraction could be done in head, on fingers, or with simple tools. Multiplication was probably much harder.
- First known multiplication table is a 4,000 year old Babylonian (base 60) multiplication table.


# Multiplication Tables

- After counting comes arithmetic. Simple addition and subtraction could be done in head, on fingers, or with simple tools. Multiplication was probably much harder.
- First known multiplication table is a 4,000 year old Babylonian (base 60) multiplication table.
- First known *decimal* multiplication table is a 2,300 year old Chinese multiplication table.

# Multiplication Tables

- After counting comes arithmetic. Simple addition and subtraction could be done in head, on fingers, or with simple tools. Multiplication was probably much harder.
- First known multiplication table is a 4,000 year old Babylonian (base 60) multiplication table.
- First known *decimal* multiplication table is a 2,300 year old Chinese multiplication table.
- It was discovered in 2009!

# Tsinghua Bamboo Strips



# Tsinghua Bamboo Strips

- An ancient multiplication table, written on bamboo strips and found in China, is the first known base-10 multiplication table.
- With a little extra work, one can use it to compute the product of any two integers or half integers from 0.5 to 99.5.  
That is, you can multiply together any two numbers from this list: 0.5, 1, 1.5, 2, 2.5, ..., 99.5.

# Tsinghua Bamboo Strips

- This multiplication table can compute the product of any two numbers from the set  $\{0.5, 1, 1.5, 2, 2.5, 3, 3.5, \dots, 99.5\}$ . How?

| 1/2            | 1             | 2   | 3              | 4   | 5              | 6   | 7              | 8   | 9              | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |               |
|----------------|---------------|-----|----------------|-----|----------------|-----|----------------|-----|----------------|-----|------|------|------|------|------|------|------|------|---------------|
| 45             | 90            | 180 | 270            | 360 | 450            | 540 | 630            | 720 | 810            | 900 | 1800 | 2700 | 3600 | 4500 | 5400 | 6300 | 7200 | 8100 | 90            |
| 40             | 80            | 160 | 240            | 320 | 400            | 480 | 560            | 640 | 720            | 800 | 1600 | 2400 | 3200 | 4000 | 4800 | 5600 | 6400 | 7200 | 80            |
| 35             | 70            | 140 | 210            | 280 | 350            | 420 | 490            | 560 | 630            | 700 | 1400 | 2100 | 2800 | 3500 | 4200 | 4900 | 5600 | 6300 | 70            |
| 30             | 60            | 120 | 180            | 240 | 300            | 360 | 420            | 480 | 540            | 600 | 1200 | 1800 | 2400 | 3000 | 3600 | 4200 | 4800 | 5400 | 60            |
| 25             | 50            | 100 | 150            | 200 | 250            | 300 | 350            | 400 | 450            | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 50            |
| 20             | 40            | 80  | 120            | 160 | 200            | 240 | 280            | 320 | 360            | 400 | 800  | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600 | 40            |
| 15             | 30            | 60  | 90             | 120 | 150            | 180 | 210            | 240 | 270            | 300 | 600  | 900  | 1200 | 1500 | 1800 | 2100 | 2400 | 2700 | 30            |
| 10             | 20            | 40  | 60             | 80  | 100            | 120 | 140            | 160 | 180            | 200 | 400  | 600  | 800  | 1000 | 1200 | 1400 | 1600 | 1800 | 20            |
| 5              | 10            | 20  | 30             | 40  | 50             | 60  | 70             | 80  | 90             | 100 | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 10            |
| $4\frac{1}{2}$ | 9             | 18  | 27             | 36  | 45             | 54  | 63             | 72  | 81             | 90  | 180  | 270  | 360  | 450  | 540  | 630  | 720  | 810  | 9             |
| 4              | 8             | 16  | 24             | 32  | 40             | 48  | 56             | 64  | 72             | 80  | 160  | 240  | 320  | 400  | 480  | 560  | 640  | 720  | 8             |
| $3\frac{1}{2}$ | 7             | 14  | 21             | 28  | 35             | 42  | 49             | 56  | 63             | 70  | 140  | 210  | 280  | 350  | 420  | 490  | 560  | 630  | 7             |
| 3              | 6             | 12  | 18             | 24  | 30             | 36  | 42             | 48  | 54             | 60  | 120  | 180  | 240  | 300  | 360  | 420  | 480  | 540  | 6             |
| $2\frac{1}{2}$ | 5             | 10  | 15             | 20  | 25             | 30  | 35             | 40  | 45             | 50  | 100  | 150  | 200  | 250  | 300  | 350  | 400  | 450  | 5             |
| 2              | 4             | 8   | 12             | 16  | 20             | 24  | 28             | 32  | 36             | 40  | 80   | 120  | 160  | 200  | 240  | 280  | 320  | 360  | 4             |
| $1\frac{1}{2}$ | 3             | 6   | 9              | 12  | 15             | 18  | 21             | 24  | 27             | 30  | 60   | 90   | 120  | 150  | 180  | 210  | 240  | 270  | 3             |
| 1              | 2             | 4   | 6              | 8   | 10             | 12  | 14             | 16  | 18             | 20  | 40   | 60   | 80   | 100  | 120  | 140  | 160  | 180  | 2             |
| $\frac{1}{2}$  | 1             | 2   | 3              | 4   | 5              | 6   | 7              | 8   | 9              | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 1             |
| $\frac{1}{4}$  | $\frac{1}{2}$ | 1   | $1\frac{1}{2}$ | 2   | $2\frac{1}{2}$ | 3   | $3\frac{1}{2}$ | 4   | $4\frac{1}{2}$ | 5   | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | $\frac{1}{2}$ |

Think Like A  
Math Historian

# Tsinghua Bamboo Strips

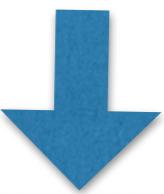
- This multiplication table can compute the product of any two numbers from the set  $\{0.5, 1, 1.5, 2, 2.5, 3, 3.5, \dots, 99.5\}$ . How?

| 1/2            | 1             | 2   | 3              | 4   | 5              | 6   | 7              | 8   | 9              | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |               |
|----------------|---------------|-----|----------------|-----|----------------|-----|----------------|-----|----------------|-----|------|------|------|------|------|------|------|------|---------------|
| 45             | 90            | 180 | 270            | 360 | 450            | 540 | 630            | 720 | 810            | 900 | 1800 | 2700 | 3600 | 4500 | 5400 | 6300 | 7200 | 8100 | 90            |
| 40             | 80            | 160 | 240            | 320 | 400            | 480 | 560            | 640 | 720            | 800 | 1600 | 2400 | 3200 | 4000 | 4800 | 5600 | 6400 | 7200 | 80            |
| 35             | 70            | 140 | 210            | 280 | 350            | 420 | 490            | 560 | 630            | 700 | 1400 | 2100 | 2800 | 3500 | 4200 | 4900 | 5600 | 6300 | 70            |
| 30             | 60            | 120 | 180            | 240 | 300            | 360 | 420            | 480 | 540            | 600 | 1200 | 1800 | 2400 | 3000 | 3600 | 4200 | 4800 | 5400 | 60            |
| 25             | 50            | 100 | 150            | 200 | 250            | 300 | 350            | 400 | 450            | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 50            |
| 20             | 40            | 80  | 120            | 160 | 200            | 240 | 280            | 320 | 360            | 400 | 800  | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600 | 40            |
| 15             | 30            | 60  | 90             | 120 | 150            | 180 | 210            | 240 | 270            | 300 | 600  | 900  | 1200 | 1500 | 1800 | 2100 | 2400 | 2700 | 30            |
| 10             | 20            | 40  | 60             | 80  | 100            | 120 | 140            | 160 | 180            | 200 | 400  | 600  | 800  | 1000 | 1200 | 1400 | 1600 | 1800 | 20            |
| 5              | 10            | 20  | 30             | 40  | 50             | 60  | 70             | 80  | 90             | 100 | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 10            |
| $4\frac{1}{2}$ | 9             | 18  | 27             | 36  | 45             | 54  | 63             | 72  | 81             | 90  | 180  | 270  | 360  | 450  | 540  | 630  | 720  | 810  | 9             |
| 4              | 8             | 16  | 24             | 32  | 40             | 48  | 56             | 64  | 72             | 80  | 160  | 240  | 320  | 400  | 480  | 560  | 640  | 720  | 8             |
| $3\frac{1}{2}$ | 7             | 14  | 21             | 28  | 35             | 42  | 49             | 56  | 63             | 70  | 140  | 210  | 280  | 350  | 420  | 490  | 560  | 630  | 7             |
| 3              | 6             | 12  | 18             | 24  | 30             | 36  | 42             | 48  | 54             | 60  | 120  | 180  | 240  | 300  | 360  | 420  | 480  | 540  | 6             |
| $2\frac{1}{2}$ | 5             | 10  | 15             | 20  | 25             | 30  | 35             | 40  | 45             | 50  | 100  | 150  | 200  | 250  | 300  | 350  | 400  | 450  | 5             |
| 2              | 4             | 8   | 12             | 16  | 20             | 24  | 28             | 32  | 36             | 40  | 80   | 120  | 160  | 200  | 240  | 280  | 320  | 360  | 4             |
| $1\frac{1}{2}$ | 3             | 6   | 9              | 12  | 15             | 18  | 21             | 24  | 27             | 30  | 60   | 90   | 120  | 150  | 180  | 210  | 240  | 270  | 3             |
| 1              | 2             | 4   | 6              | 8   | 10             | 12  | 14             | 16  | 18             | 20  | 40   | 60   | 80   | 100  | 120  | 140  | 160  | 180  | 2             |
| $\frac{1}{2}$  | 1             | 2   | 3              | 4   | 5              | 6   | 7              | 8   | 9              | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 1             |
| $\frac{1}{4}$  | $\frac{1}{2}$ | 1   | $1\frac{1}{2}$ | 2   | $2\frac{1}{2}$ | 3   | $3\frac{1}{2}$ | 4   | $4\frac{1}{2}$ | 5   | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | $\frac{1}{2}$ |

# Tsinghua Bamboo Strips

- Example:  $24 \cdot 36.5 = ?$

| 1/2            | 1             | 2   | 3              | 4   | 5              | 6   | 7              | 8   | 9              | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |               |
|----------------|---------------|-----|----------------|-----|----------------|-----|----------------|-----|----------------|-----|------|------|------|------|------|------|------|------|---------------|
| 45             | 90            | 180 | 270            | 360 | 450            | 540 | 630            | 720 | 810            | 900 | 1800 | 2700 | 3600 | 4500 | 5400 | 6300 | 7200 | 8100 | 90            |
| 40             | 80            | 160 | 240            | 320 | 400            | 480 | 560            | 640 | 720            | 800 | 1600 | 2400 | 3200 | 4000 | 4800 | 5600 | 6400 | 7200 | 80            |
| 35             | 70            | 140 | 210            | 280 | 350            | 420 | 490            | 560 | 630            | 700 | 1400 | 2100 | 2800 | 3500 | 4200 | 4900 | 5600 | 6300 | 70            |
| 30             | 60            | 120 | 180            | 240 | 300            | 360 | 420            | 480 | 540            | 600 | 1200 | 1800 | 2400 | 3000 | 3600 | 4200 | 4800 | 5400 | 60            |
| 25             | 50            | 100 | 150            | 200 | 250            | 300 | 350            | 400 | 450            | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 50            |
| 20             | 40            | 80  | 120            | 160 | 200            | 240 | 280            | 320 | 360            | 400 | 800  | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600 | 40            |
| 15             | 30            | 60  | 90             | 120 | 150            | 180 | 210            | 240 | 270            | 300 | 600  | 900  | 1200 | 1500 | 1800 | 2100 | 2400 | 2700 | 30            |
| 10             | 20            | 40  | 60             | 80  | 100            | 120 | 140            | 160 | 180            | 200 | 400  | 600  | 800  | 1000 | 1200 | 1400 | 1600 | 1800 | 20            |
| 5              | 10            | 20  | 30             | 40  | 50             | 60  | 70             | 80  | 90             | 100 | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 10            |
| $4\frac{1}{2}$ | 9             | 18  | 27             | 36  | 45             | 54  | 63             | 72  | 81             | 90  | 180  | 270  | 360  | 450  | 540  | 630  | 720  | 810  | 9             |
| 4              | 8             | 16  | 24             | 32  | 40             | 48  | 56             | 64  | 72             | 80  | 160  | 240  | 320  | 400  | 480  | 560  | 640  | 720  | 8             |
| $3\frac{1}{2}$ | 7             | 14  | 21             | 28  | 35             | 42  | 49             | 56  | 63             | 70  | 140  | 210  | 280  | 350  | 420  | 490  | 560  | 630  | 7             |
| 3              | 6             | 12  | 18             | 24  | 30             | 36  | 42             | 48  | 54             | 60  | 120  | 180  | 240  | 300  | 360  | 420  | 480  | 540  | 6             |
| $2\frac{1}{2}$ | 5             | 10  | 15             | 20  | 25             | 30  | 35             | 40  | 45             | 50  | 100  | 150  | 200  | 250  | 300  | 350  | 400  | 450  | 5             |
| 2              | 4             | 8   | 12             | 16  | 20             | 24  | 28             | 32  | 36             | 40  | 80   | 120  | 160  | 200  | 240  | 280  | 320  | 360  | 4             |
| $1\frac{1}{2}$ | 3             | 6   | 9              | 12  | 15             | 18  | 21             | 24  | 27             | 30  | 60   | 90   | 120  | 150  | 180  | 210  | 240  | 270  | 3             |
| 1              | 2             | 4   | 6              | 8   | 10             | 12  | 14             | 16  | 18             | 20  | 40   | 60   | 80   | 100  | 120  | 140  | 160  | 180  | 2             |
| $\frac{1}{2}$  | 1             | 2   | 3              | 4   | 5              | 6   | 7              | 8   | 9              | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 1             |
| $\frac{1}{4}$  | $\frac{1}{2}$ | 1   | $1\frac{1}{2}$ | 2   | $2\frac{1}{2}$ | 3   | $3\frac{1}{2}$ | 4   | $4\frac{1}{2}$ | 5   | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | $\frac{1}{2}$ |


# Tsinghua Bamboo Strips



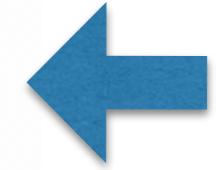
- Example:  $24 \cdot 36.5 = ?$

| 1/2            | 1             | 2   | 3              | 4   | 5              | 6   | 7              | 8   | 9              | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |               |
|----------------|---------------|-----|----------------|-----|----------------|-----|----------------|-----|----------------|-----|------|------|------|------|------|------|------|------|---------------|
| 45             | 90            | 180 | 270            | 360 | 450            | 540 | 630            | 720 | 810            | 900 | 1800 | 2700 | 3600 | 4500 | 5400 | 6300 | 7200 | 8100 | 90            |
| 40             | 80            | 160 | 240            | 320 | 400            | 480 | 560            | 640 | 720            | 800 | 1600 | 2400 | 3200 | 4000 | 4800 | 5600 | 6400 | 7200 | 80            |
| 35             | 70            | 140 | 210            | 280 | 350            | 420 | 490            | 560 | 630            | 700 | 1400 | 2100 | 2800 | 3500 | 4200 | 4900 | 5600 | 6300 | 70            |
| 30             | 60            | 120 | 180            | 240 | 300            | 360 | 420            | 480 | 540            | 600 | 1200 | 1800 | 2400 | 3000 | 3600 | 4200 | 4800 | 5400 | 60            |
| 25             | 50            | 100 | 150            | 200 | 250            | 300 | 350            | 400 | 450            | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 50            |
| 20             | 40            | 80  | 120            | 160 | 200            | 240 | 280            | 320 | 360            | 400 | 800  | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600 | 40            |
| 15             | 30            | 60  | 90             | 120 | 150            | 180 | 210            | 240 | 270            | 300 | 600  | 900  | 1200 | 1500 | 1800 | 2100 | 2400 | 2700 | 30            |
| 10             | 20            | 40  | 60             | 80  | 100            | 120 | 140            | 160 | 180            | 200 | 400  | 600  | 800  | 1000 | 1200 | 1400 | 1600 | 1800 | 20            |
| 5              | 10            | 20  | 30             | 40  | 50             | 60  | 70             | 80  | 90             | 100 | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 10            |
| $4\frac{1}{2}$ | 9             | 18  | 27             | 36  | 45             | 54  | 63             | 72  | 81             | 90  | 180  | 270  | 360  | 450  | 540  | 630  | 720  | 810  | 9             |
| 4              | 8             | 16  | 24             | 32  | 40             | 48  | 56             | 64  | 72             | 80  | 160  | 240  | 320  | 400  | 480  | 560  | 640  | 720  | 8             |
| $3\frac{1}{2}$ | 7             | 14  | 21             | 28  | 35             | 42  | 49             | 56  | 63             | 70  | 140  | 210  | 280  | 350  | 420  | 490  | 560  | 630  | 7             |
| 3              | 6             | 12  | 18             | 24  | 30             | 36  | 42             | 48  | 54             | 60  | 120  | 180  | 240  | 300  | 360  | 420  | 480  | 540  | 6             |
| $2\frac{1}{2}$ | 5             | 10  | 15             | 20  | 25             | 30  | 35             | 40  | 45             | 50  | 100  | 150  | 200  | 250  | 300  | 350  | 400  | 450  | 5             |
| 2              | 4             | 8   | 12             | 16  | 20             | 24  | 28             | 32  | 36             | 40  | 80   | 120  | 160  | 200  | 240  | 280  | 320  | 360  | 4             |
| $1\frac{1}{2}$ | 3             | 6   | 9              | 12  | 15             | 18  | 21             | 24  | 27             | 30  | 60   | 90   | 120  | 150  | 180  | 210  | 240  | 270  | 3             |
| 1              | 2             | 4   | 6              | 8   | 10             | 12  | 14             | 16  | 18             | 20  | 40   | 60   | 80   | 100  | 120  | 140  | 160  | 180  | 2             |
| $\frac{1}{2}$  | 1             | 2   | 3              | 4   | 5              | 6   | 7              | 8   | 9              | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 1             |
| $\frac{1}{4}$  | $\frac{1}{2}$ | 1   | $1\frac{1}{2}$ | 2   | $2\frac{1}{2}$ | 3   | $3\frac{1}{2}$ | 4   | $4\frac{1}{2}$ | 5   | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | $\frac{1}{2}$ |


# Tsinghua Bamboo Strips



• Example:  $24 \cdot 36.5 = ?$

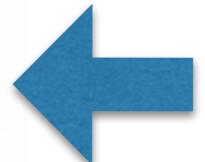
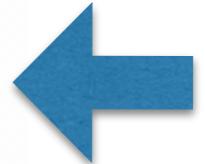

| 1/2             | 1   | 2   | 3               | 4   | 5               | 6   | 7               | 8   | 9               | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |     |
|-----------------|-----|-----|-----------------|-----|-----------------|-----|-----------------|-----|-----------------|-----|------|------|------|------|------|------|------|------|-----|
| 45              | 90  | 180 | 270             | 360 | 450             | 540 | 630             | 720 | 810             | 900 | 1800 | 2700 | 3600 | 4500 | 5400 | 6300 | 7200 | 8100 | 90  |
| 40              | 80  | 160 | 240             | 320 | 400             | 480 | 560             | 640 | 720             | 800 | 1600 | 2400 | 3200 | 4000 | 4800 | 5600 | 6400 | 7200 | 80  |
| 35              | 70  | 140 | 210             | 280 | 350             | 420 | 490             | 560 | 630             | 700 | 1400 | 2100 | 2800 | 3500 | 4200 | 4900 | 5600 | 6300 | 70  |
| 30              | 60  | 120 | 180             | 240 | 300             | 360 | 420             | 480 | 540             | 600 | 1200 | 1800 | 2400 | 3000 | 3600 | 4200 | 4800 | 5400 | 60  |
| 25              | 50  | 100 | 150             | 200 | 250             | 300 | 350             | 400 | 450             | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 50  |
| 20              | 40  | 80  | 120             | 160 | 200             | 240 | 280             | 320 | 360             | 400 | 800  | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600 | 40  |
| 15              | 30  | 60  | 90              | 120 | 150             | 180 | 210             | 240 | 270             | 300 | 600  | 900  | 1200 | 1500 | 1800 | 2100 | 2400 | 2700 | 30  |
| 10              | 20  | 40  | 60              | 80  | 100             | 120 | 140             | 160 | 180             | 200 | 400  | 600  | 800  | 1000 | 1200 | 1400 | 1600 | 1800 | 20  |
| 5               | 10  | 20  | 30              | 40  | 50              | 60  | 70              | 80  | 90              | 100 | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 10  |
| 4 $\frac{1}{2}$ | 9   | 18  | 27              | 36  | 45              | 54  | 63              | 72  | 81              | 90  | 180  | 270  | 360  | 450  | 540  | 630  | 720  | 810  | 9   |
| 4               | 8   | 16  | 24              | 32  | 40              | 48  | 56              | 64  | 72              | 80  | 160  | 240  | 320  | 400  | 480  | 560  | 640  | 720  | 8   |
| 3 $\frac{1}{2}$ | 7   | 14  | 21              | 28  | 35              | 42  | 49              | 56  | 63              | 70  | 140  | 210  | 280  | 350  | 420  | 490  | 560  | 630  | 7   |
| 3               | 6   | 12  | 18              | 24  | 30              | 36  | 42              | 48  | 54              | 60  | 120  | 180  | 240  | 300  | 360  | 420  | 480  | 540  | 6   |
| 2 $\frac{1}{2}$ | 5   | 10  | 15              | 20  | 25              | 30  | 35              | 40  | 45              | 50  | 100  | 150  | 200  | 250  | 300  | 350  | 400  | 450  | 5   |
| 2               | 4   | 8   | 12              | 16  | 20              | 24  | 28              | 32  | 36              | 40  | 80   | 120  | 160  | 200  | 240  | 280  | 320  | 360  | 4   |
| 1 $\frac{1}{2}$ | 3   | 6   | 9               | 12  | 15              | 18  | 21              | 24  | 27              | 30  | 60   | 90   | 120  | 150  | 180  | 210  | 240  | 270  | 3   |
| 1               | 2   | 4   | 6               | 8   | 10              | 12  | 14              | 16  | 18              | 20  | 40   | 60   | 80   | 100  | 120  | 140  | 160  | 180  | 2   |
| 1 $\frac{1}{2}$ | 1   | 2   | 3               | 4   | 5               | 6   | 7               | 8   | 9               | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 1   |
| 1/4             | 1/2 | 1   | 1 $\frac{1}{2}$ | 2   | 2 $\frac{1}{2}$ | 3   | 3 $\frac{1}{2}$ | 4   | 4 $\frac{1}{2}$ | 5   | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | 1/2 |

# Tsinghua Bamboo Strips




• Example:  $24 \cdot 36.5 = ?$

| 1/2             | 1   | 2   | 3               | 4   | 5               | 6   | 7               | 8   | 9               | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |     |
|-----------------|-----|-----|-----------------|-----|-----------------|-----|-----------------|-----|-----------------|-----|------|------|------|------|------|------|------|------|-----|
| 45              | 90  | 180 | 270             | 360 | 450             | 540 | 630             | 720 | 810             | 900 | 1800 | 2700 | 3600 | 4500 | 5400 | 6300 | 7200 | 8100 | 90  |
| 40              | 80  | 160 | 240             | 320 | 400             | 480 | 560             | 640 | 720             | 800 | 1600 | 2400 | 3200 | 4000 | 4800 | 5600 | 6400 | 7200 | 80  |
| 35              | 70  | 140 | 210             | 280 | 350             | 420 | 490             | 560 | 630             | 700 | 1400 | 2100 | 2800 | 3500 | 4200 | 4900 | 5600 | 6300 | 70  |
| 30              | 60  | 120 | 180             | 240 | 300             | 360 | 420             | 480 | 540             | 600 | 1200 | 1800 | 2400 | 3000 | 3600 | 4200 | 4800 | 5400 | 60  |
| 25              | 50  | 100 | 150             | 200 | 250             | 300 | 350             | 400 | 450             | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 50  |
| 20              | 40  | 80  | 120             | 160 | 200             | 240 | 280             | 320 | 360             | 400 | 800  | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600 | 40  |
| 15              | 30  | 60  | 90              | 120 | 150             | 180 | 210             | 240 | 270             | 300 | 600  | 900  | 1200 | 1500 | 1800 | 2100 | 2400 | 2700 | 30  |
| 10              | 20  | 40  | 60              | 80  | 100             | 120 | 140             | 160 | 180             | 200 | 400  | 600  | 800  | 1000 | 1200 | 1400 | 1600 | 1800 | 20  |
| 5               | 10  | 20  | 30              | 40  | 50              | 60  | 70              | 80  | 90              | 100 | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 10  |
| 4 $\frac{1}{2}$ | 9   | 18  | 27              | 36  | 45              | 54  | 63              | 72  | 81              | 90  | 180  | 270  | 360  | 450  | 540  | 630  | 720  | 810  | 9   |
| 4               | 8   | 16  | 24              | 32  | 40              | 48  | 56              | 64  | 72              | 80  | 160  | 240  | 320  | 400  | 480  | 560  | 640  | 720  | 8   |
| 3 $\frac{1}{2}$ | 7   | 14  | 21              | 28  | 35              | 42  | 49              | 56  | 63              | 70  | 140  | 210  | 280  | 350  | 420  | 490  | 560  | 630  | 7   |
| 3               | 6   | 12  | 18              | 24  | 30              | 36  | 42              | 48  | 54              | 60  | 120  | 180  | 240  | 300  | 360  | 420  | 480  | 540  | 6   |
| 2 $\frac{1}{2}$ | 5   | 10  | 15              | 20  | 25              | 30  | 35              | 40  | 45              | 50  | 100  | 150  | 200  | 250  | 300  | 350  | 400  | 450  | 5   |
| 2               | 4   | 8   | 12              | 16  | 20              | 24  | 28              | 32  | 36              | 40  | 80   | 120  | 160  | 200  | 240  | 280  | 320  | 360  | 4   |
| 1 $\frac{1}{2}$ | 3   | 6   | 9               | 12  | 15              | 18  | 21              | 24  | 27              | 30  | 60   | 90   | 120  | 150  | 180  | 210  | 240  | 270  | 3   |
| 1               | 2   | 4   | 6               | 8   | 10              | 12  | 14              | 16  | 18              | 20  | 40   | 60   | 80   | 100  | 120  | 140  | 160  | 180  | 2   |
| 1 $\frac{1}{2}$ | 1   | 2   | 3               | 4   | 5               | 6   | 7               | 8   | 9               | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 1   |
| 1/4             | 1/2 | 1   | 1 $\frac{1}{2}$ | 2   | 2 $\frac{1}{2}$ | 3   | 3 $\frac{1}{2}$ | 4   | 4 $\frac{1}{2}$ | 5   | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | 1/2 |

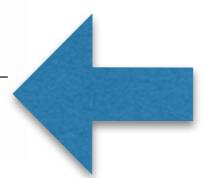
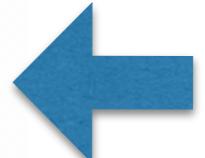




# Tsinghua Bamboo Strips



• Example:  $24 \cdot 36.5 = ?$

| 1/2             | 1   | 2   | 3               | 4   | 5               | 6   | 7               | 8   | 9               | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |     |
|-----------------|-----|-----|-----------------|-----|-----------------|-----|-----------------|-----|-----------------|-----|------|------|------|------|------|------|------|------|-----|
| 45              | 90  | 180 | 270             | 360 | 450             | 540 | 630             | 720 | 810             | 900 | 1800 | 2700 | 3600 | 4500 | 5400 | 6300 | 7200 | 8100 | 90  |
| 40              | 80  | 160 | 240             | 320 | 400             | 480 | 560             | 640 | 720             | 800 | 1600 | 2400 | 3200 | 4000 | 4800 | 5600 | 6400 | 7200 | 80  |
| 35              | 70  | 140 | 210             | 280 | 350             | 420 | 490             | 560 | 630             | 700 | 1400 | 2100 | 2800 | 3500 | 4200 | 4900 | 5600 | 6300 | 70  |
| 30              | 60  | 120 | 180             | 240 | 300             | 360 | 420             | 480 | 540             | 600 | 1200 | 1800 | 2400 | 3000 | 3600 | 4200 | 4800 | 5400 | 60  |
| 25              | 50  | 100 | 150             | 200 | 250             | 300 | 350             | 400 | 450             | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 50  |
| 20              | 40  | 80  | 120             | 160 | 200             | 240 | 280             | 320 | 360             | 400 | 800  | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600 | 40  |
| 15              | 30  | 60  | 90              | 120 | 150             | 180 | 210             | 240 | 270             | 300 | 600  | 900  | 1200 | 1500 | 1800 | 2100 | 2400 | 2700 | 30  |
| 10              | 20  | 40  | 60              | 80  | 100             | 120 | 140             | 160 | 180             | 200 | 400  | 600  | 800  | 1000 | 1200 | 1400 | 1600 | 1800 | 20  |
| 5               | 10  | 20  | 30              | 40  | 50              | 60  | 70              | 80  | 90              | 100 | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 10  |
| 4 $\frac{1}{2}$ | 9   | 18  | 27              | 36  | 45              | 54  | 63              | 72  | 81              | 90  | 180  | 270  | 360  | 450  | 540  | 630  | 720  | 810  | 9   |
| 4               | 8   | 16  | 24              | 32  | 40              | 48  | 56              | 64  | 72              | 80  | 160  | 240  | 320  | 400  | 480  | 560  | 640  | 720  | 8   |
| 3 $\frac{1}{2}$ | 7   | 14  | 21              | 28  | 35              | 42  | 49              | 56  | 63              | 70  | 140  | 210  | 280  | 350  | 420  | 490  | 560  | 630  | 7   |
| 3               | 6   | 12  | 18              | 24  | 30              | 36  | 42              | 48  | 54              | 60  | 120  | 180  | 240  | 300  | 360  | 420  | 480  | 540  | 6   |
| 2 $\frac{1}{2}$ | 5   | 10  | 15              | 20  | 25              | 30  | 35              | 40  | 45              | 50  | 100  | 150  | 200  | 250  | 300  | 350  | 400  | 450  | 5   |
| 2               | 4   | 8   | 12              | 16  | 20              | 24  | 28              | 32  | 36              | 40  | 80   | 120  | 160  | 200  | 240  | 280  | 320  | 360  | 4   |
| 1 $\frac{1}{2}$ | 3   | 6   | 9               | 12  | 15              | 18  | 21              | 24  | 27              | 30  | 60   | 90   | 120  | 150  | 180  | 210  | 240  | 270  | 3   |
| 1               | 2   | 4   | 6               | 8   | 10              | 12  | 14              | 16  | 18              | 20  | 40   | 60   | 80   | 100  | 120  | 140  | 160  | 180  | 2   |
| 1 $\frac{1}{2}$ | 1   | 2   | 3               | 4   | 5               | 6   | 7               | 8   | 9               | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 1   |
| 1/4             | 1/2 | 1   | 1 $\frac{1}{2}$ | 2   | 2 $\frac{1}{2}$ | 3   | 3 $\frac{1}{2}$ | 4   | 4 $\frac{1}{2}$ | 5   | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | 1/2 |

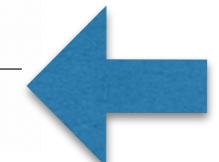




# Tsinghua Bamboo Strips



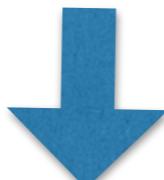
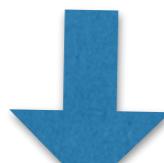
• Example:  $24 \cdot 36.5 = ?$

| 1/2             | 1   | 2   | 3               | 4   | 5               | 6   | 7               | 8   | 9               | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |     |
|-----------------|-----|-----|-----------------|-----|-----------------|-----|-----------------|-----|-----------------|-----|------|------|------|------|------|------|------|------|-----|
| 45              | 90  | 180 | 270             | 360 | 450             | 540 | 630             | 720 | 810             | 900 | 1800 | 2700 | 3600 | 4500 | 5400 | 6300 | 7200 | 8100 | 90  |
| 40              | 80  | 160 | 240             | 320 | 400             | 480 | 560             | 640 | 720             | 800 | 1600 | 2400 | 3200 | 4000 | 4800 | 5600 | 6400 | 7200 | 80  |
| 35              | 70  | 140 | 210             | 280 | 350             | 420 | 490             | 560 | 630             | 700 | 1400 | 2100 | 2800 | 3500 | 4200 | 4900 | 5600 | 6300 | 70  |
| 30              | 60  | 120 | 180             | 240 | 300             | 360 | 420             | 480 | 540             | 600 | 1200 | 1800 | 2400 | 3000 | 3600 | 4200 | 4800 | 5400 | 60  |
| 25              | 50  | 100 | 150             | 200 | 250             | 300 | 350             | 400 | 450             | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 50  |
| 20              | 40  | 80  | 120             | 160 | 200             | 240 | 280             | 320 | 360             | 400 | 800  | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600 | 40  |
| 15              | 30  | 60  | 90              | 120 | 150             | 180 | 210             | 240 | 270             | 300 | 600  | 900  | 1200 | 1500 | 1800 | 2100 | 2400 | 2700 | 30  |
| 10              | 20  | 40  | 60              | 80  | 100             | 120 | 140             | 160 | 180             | 200 | 400  | 600  | 800  | 1000 | 1200 | 1400 | 1600 | 1800 | 20  |
| 5               | 10  | 20  | 30              | 40  | 50              | 60  | 70              | 80  | 90              | 100 | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 10  |
| 4 $\frac{1}{2}$ | 9   | 18  | 27              | 36  | 45              | 54  | 63              | 72  | 81              | 90  | 180  | 270  | 360  | 450  | 540  | 630  | 720  | 810  | 9   |
| 4               | 8   | 16  | 24              | 32  | 40              | 48  | 56              | 64  | 72              | 80  | 160  | 240  | 320  | 400  | 480  | 560  | 640  | 720  | 8   |
| 3 $\frac{1}{2}$ | 7   | 14  | 21              | 28  | 35              | 42  | 49              | 56  | 63              | 70  | 140  | 210  | 280  | 350  | 420  | 490  | 560  | 630  | 7   |
| 3               | 6   | 12  | 18              | 24  | 30              | 36  | 42              | 48  | 54              | 60  | 120  | 180  | 240  | 300  | 360  | 420  | 480  | 540  | 6   |
| 2 $\frac{1}{2}$ | 5   | 10  | 15              | 20  | 25              | 30  | 35              | 40  | 45              | 50  | 100  | 150  | 200  | 250  | 300  | 350  | 400  | 450  | 5   |
| 2               | 4   | 8   | 12              | 16  | 20              | 24  | 28              | 32  | 36              | 40  | 80   | 120  | 160  | 200  | 240  | 280  | 320  | 360  | 4   |
| 1 $\frac{1}{2}$ | 3   | 6   | 9               | 12  | 15              | 18  | 21              | 24  | 27              | 30  | 60   | 90   | 120  | 150  | 180  | 210  | 240  | 270  | 3   |
| 1               | 2   | 4   | 6               | 8   | 10              | 12  | 14              | 16  | 18              | 20  | 40   | 60   | 80   | 100  | 120  | 140  | 160  | 180  | 2   |
| 1 $\frac{1}{2}$ | 1   | 2   | 3               | 4   | 5               | 6   | 7               | 8   | 9               | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 1   |
| 1/4             | 1/2 | 1   | 1 $\frac{1}{2}$ | 2   | 2 $\frac{1}{2}$ | 3   | 3 $\frac{1}{2}$ | 4   | 4 $\frac{1}{2}$ | 5   | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | 1/2 |



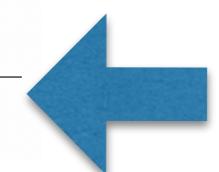
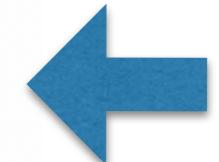
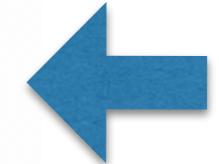

# Tsinghua Bamboo Strips





• Example:  $24 \cdot 36.5 = ?$

| 1/2            | 1             | 2   | 3              | 4   | 5              | 6   | 7              | 8   | 9              | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |               |
|----------------|---------------|-----|----------------|-----|----------------|-----|----------------|-----|----------------|-----|------|------|------|------|------|------|------|------|---------------|
| 45             | 90            | 180 | 270            | 360 | 450            | 540 | 630            | 720 | 810            | 900 | 1800 | 2700 | 3600 | 4500 | 5400 | 6300 | 7200 | 8100 | 90            |
| 40             | 80            | 160 | 240            | 320 | 400            | 480 | 560            | 640 | 720            | 800 | 1600 | 2400 | 3200 | 4000 | 4800 | 5600 | 6400 | 7200 | 80            |
| 35             | 70            | 140 | 210            | 280 | 350            | 420 | 490            | 560 | 630            | 700 | 1400 | 2100 | 2800 | 3500 | 4200 | 4900 | 5600 | 6300 | 70            |
| 30             | 60            | 120 | 180            | 240 | 300            | 360 | 420            | 480 | 540            | 600 | 1200 | 1800 | 2400 | 3000 | 3600 | 4200 | 4800 | 5400 | 60            |
| 25             | 50            | 100 | 150            | 200 | 250            | 300 | 350            | 400 | 450            | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 50            |
| 20             | 40            | 80  | 120            | 160 | 200            | 240 | 280            | 320 | 360            | 400 | 800  | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600 | 40            |
| 15             | 30            | 60  | 90             | 120 | 150            | 180 | 210            | 240 | 270            | 300 | 600  | 900  | 1200 | 1500 | 1800 | 2100 | 2400 | 2700 | 30            |
| 10             | 20            | 40  | 60             | 80  | 100            | 120 | 140            | 160 | 180            | 200 | 400  | 600  | 800  | 1000 | 1200 | 1400 | 1600 | 1800 | 20            |
| 5              | 10            | 20  | 30             | 40  | 50             | 60  | 70             | 80  | 90             | 100 | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 10            |
| $4\frac{1}{2}$ | 9             | 18  | 27             | 36  | 45             | 54  | 63             | 72  | 81             | 90  | 180  | 270  | 360  | 450  | 540  | 630  | 720  | 810  | 9             |
| 4              | 8             | 16  | 24             | 32  | 40             | 48  | 56             | 64  | 72             | 80  | 160  | 240  | 320  | 400  | 480  | 560  | 640  | 720  | 8             |
| $3\frac{1}{2}$ | 7             | 14  | 21             | 28  | 35             | 42  | 49             | 56  | 63             | 70  | 140  | 210  | 280  | 350  | 420  | 490  | 560  | 630  | 7             |
| 3              | 6             | 12  | 18             | 24  | 30             | 36  | 42             | 48  | 54             | 60  | 120  | 180  | 240  | 300  | 360  | 420  | 480  | 540  | 6             |
| $2\frac{1}{2}$ | 5             | 10  | 15             | 20  | 25             | 30  | 35             | 40  | 45             | 50  | 100  | 150  | 200  | 250  | 300  | 350  | 400  | 450  | 5             |
| 2              | 4             | 8   | 12             | 16  | 20             | 24  | 28             | 32  | 36             | 40  | 80   | 120  | 160  | 200  | 240  | 280  | 320  | 360  | 4             |
| $1\frac{1}{2}$ | 3             | 6   | 9              | 12  | 15             | 18  | 21             | 24  | 27             | 30  | 60   | 90   | 120  | 150  | 180  | 210  | 240  | 270  | 3             |
| 1              | 2             | 4   | 6              | 8   | 10             | 12  | 14             | 16  | 18             | 20  | 40   | 60   | 80   | 100  | 120  | 140  | 160  | 180  | 2             |
| $\frac{1}{2}$  | 1             | 2   | 3              | 4   | 5              | 6   | 7              | 8   | 9              | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 1             |
| $\frac{1}{4}$  | $\frac{1}{2}$ | 1   | $1\frac{1}{2}$ | 2   | $2\frac{1}{2}$ | 3   | $3\frac{1}{2}$ | 4   | $4\frac{1}{2}$ | 5   | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | $\frac{1}{2}$ |






$$24 \cdot 36.5 = (20 + 4) \cdot (30 + 6 + 0.5)$$

# Tsinghua Bamboo Strips



• Example:  $24 \cdot 36.5 = ?$

| 1/2            | 1             | 2   | 3              | 4   | 5              | 6   | 7              | 8   | 9              | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |               |
|----------------|---------------|-----|----------------|-----|----------------|-----|----------------|-----|----------------|-----|------|------|------|------|------|------|------|------|---------------|
| 45             | 90            | 180 | 270            | 360 | 450            | 540 | 630            | 720 | 810            | 900 | 1800 | 2700 | 3600 | 4500 | 5400 | 6300 | 7200 | 8100 | 90            |
| 40             | 80            | 160 | 240            | 320 | 400            | 480 | 560            | 640 | 720            | 800 | 1600 | 2400 | 3200 | 4000 | 4800 | 5600 | 6400 | 7200 | 80            |
| 35             | 70            | 140 | 210            | 280 | 350            | 420 | 490            | 560 | 630            | 700 | 1400 | 2100 | 2800 | 3500 | 4200 | 4900 | 5600 | 6300 | 70            |
| 30             | 60            | 120 | 180            | 240 | 300            | 360 | 420            | 480 | 540            | 600 | 1200 | 1800 | 2400 | 3000 | 3600 | 4200 | 4800 | 5400 | 60            |
| 25             | 50            | 100 | 150            | 200 | 250            | 300 | 350            | 400 | 450            | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 50            |
| 20             | 40            | 80  | 120            | 160 | 200            | 240 | 280            | 320 | 360            | 400 | 800  | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600 | 40            |
| 15             | 30            | 60  | 90             | 120 | 150            | 180 | 210            | 240 | 270            | 300 | 600  | 900  | 1200 | 1500 | 1800 | 2100 | 2400 | 2700 | 30            |
| 10             | 20            | 40  | 60             | 80  | 100            | 120 | 140            | 160 | 180            | 200 | 400  | 600  | 800  | 1000 | 1200 | 1400 | 1600 | 1800 | 20            |
| 5              | 10            | 20  | 30             | 40  | 50             | 60  | 70             | 80  | 90             | 100 | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 10            |
| $4\frac{1}{2}$ | 9             | 18  | 27             | 36  | 45             | 54  | 63             | 72  | 81             | 90  | 180  | 270  | 360  | 450  | 540  | 630  | 720  | 810  | 9             |
| 4              | 8             | 16  | 24             | 32  | 40             | 48  | 56             | 64  | 72             | 80  | 160  | 240  | 320  | 400  | 480  | 560  | 640  | 720  | 8             |
| $3\frac{1}{2}$ | 7             | 14  | 21             | 28  | 35             | 42  | 49             | 56  | 63             | 70  | 140  | 210  | 280  | 350  | 420  | 490  | 560  | 630  | 7             |
| 3              | 6             | 12  | 18             | 24  | 30             | 36  | 42             | 48  | 54             | 60  | 120  | 180  | 240  | 300  | 360  | 420  | 480  | 540  | 6             |
| $2\frac{1}{2}$ | 5             | 10  | 15             | 20  | 25             | 30  | 35             | 40  | 45             | 50  | 100  | 150  | 200  | 250  | 300  | 350  | 400  | 450  | 5             |
| 2              | 4             | 8   | 12             | 16  | 20             | 24  | 28             | 32  | 36             | 40  | 80   | 120  | 160  | 200  | 240  | 280  | 320  | 360  | 4             |
| $1\frac{1}{2}$ | 3             | 6   | 9              | 12  | 15             | 18  | 21             | 24  | 27             | 30  | 60   | 90   | 120  | 150  | 180  | 210  | 240  | 270  | 3             |
| 1              | 2             | 4   | 6              | 8   | 10             | 12  | 14             | 16  | 18             | 20  | 40   | 60   | 80   | 100  | 120  | 140  | 160  | 180  | 2             |
| $\frac{1}{2}$  | 1             | 2   | 3              | 4   | 5              | 6   | 7              | 8   | 9              | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 1             |
| $\frac{1}{4}$  | $\frac{1}{2}$ | 1   | $1\frac{1}{2}$ | 2   | $2\frac{1}{2}$ | 3   | $3\frac{1}{2}$ | 4   | $4\frac{1}{2}$ | 5   | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | $\frac{1}{2}$ |



$$24 \cdot 36.5 = (20 + 4) \cdot (30 + 6 + 0.5)$$

# Tsinghua Bamboo Strips

- Example:  $24 \cdot 36.5 = ?$

| 1/2            | 1             | 2   | 3              | 4   | 5              | 6   | 7              | 8   | 9              | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |               |
|----------------|---------------|-----|----------------|-----|----------------|-----|----------------|-----|----------------|-----|------|------|------|------|------|------|------|------|---------------|
| 45             | 90            | 180 | 270            | 360 | 450            | 540 | 630            | 720 | 810            | 900 | 1800 | 2700 | 3600 | 4500 | 5400 | 6300 | 7200 | 8100 | 90            |
| 40             | 80            | 160 | 240            | 320 | 400            | 480 | 560            | 640 | 720            | 800 | 1600 | 2400 | 3200 | 4000 | 4800 | 5600 | 6400 | 7200 | 80            |
| 35             | 70            | 140 | 210            | 280 | 350            | 420 | 490            | 560 | 630            | 700 | 1400 | 2100 | 2800 | 3500 | 4200 | 4900 | 5600 | 6300 | 70            |
| 30             | 60            | 120 | 180            | 240 | 300            | 360 | 420            | 480 | 540            | 600 | 1200 | 1800 | 2400 | 3000 | 3600 | 4200 | 4800 | 5400 | 60            |
| 25             | 50            | 100 | 150            | 200 | 250            | 300 | 350            | 400 | 450            | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 50            |
| 20             | 40            | 80  | 120            | 160 | 200            | 240 | 280            | 320 | 360            | 400 | 800  | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600 | 40            |
| 15             | 30            | 60  | 90             | 120 | 150            | 180 | 210            | 240 | 270            | 300 | 600  | 900  | 1200 | 1500 | 1800 | 2100 | 2400 | 2700 | 30            |
| 10             | 20            | 40  | 60             | 80  | 100            | 120 | 140            | 160 | 180            | 200 | 400  | 600  | 800  | 1000 | 1200 | 1400 | 1600 | 1800 | 20            |
| 5              | 10            | 20  | 30             | 40  | 50             | 60  | 70             | 80  | 90             | 100 | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 10            |
| $4\frac{1}{2}$ | 9             | 18  | 27             | 36  | 45             | 54  | 63             | 72  | 81             | 90  | 180  | 270  | 360  | 450  | 540  | 630  | 720  | 810  | 9             |
| 4              | 8             | 16  | 24             | 32  | 40             | 48  | 56             | 64  | 72             | 80  | 160  | 240  | 320  | 400  | 480  | 560  | 640  | 720  | 8             |
| $3\frac{1}{2}$ | 7             | 14  | 21             | 28  | 35             | 42  | 49             | 56  | 63             | 70  | 140  | 210  | 280  | 350  | 420  | 490  | 560  | 630  | 7             |
| 3              | 6             | 12  | 18             | 24  | 30             | 36  | 42             | 48  | 54             | 60  | 120  | 180  | 240  | 300  | 360  | 420  | 480  | 540  | 6             |
| $2\frac{1}{2}$ | 5             | 10  | 15             | 20  | 25             | 30  | 35             | 40  | 45             | 50  | 100  | 150  | 200  | 250  | 300  | 350  | 400  | 450  | 5             |
| 2              | 4             | 8   | 12             | 16  | 20             | 24  | 28             | 32  | 36             | 40  | 80   | 120  | 160  | 200  | 240  | 280  | 320  | 360  | 4             |
| $1\frac{1}{2}$ | 3             | 6   | 9              | 12  | 15             | 18  | 21             | 24  | 27             | 30  | 60   | 90   | 120  | 150  | 180  | 210  | 240  | 270  | 3             |
| 1              | 2             | 4   | 6              | 8   | 10             | 12  | 14             | 16  | 18             | 20  | 40   | 60   | 80   | 100  | 120  | 140  | 160  | 180  | 2             |
| $\frac{1}{2}$  | 1             | 2   | 3              | 4   | 5              | 6   | 7              | 8   | 9              | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 1             |
| $\frac{1}{4}$  | $\frac{1}{2}$ | 1   | $1\frac{1}{2}$ | 2   | $2\frac{1}{2}$ | 3   | $3\frac{1}{2}$ | 4   | $4\frac{1}{2}$ | 5   | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | $\frac{1}{2}$ |

$$24 \cdot 36.5 = (20 + 4) \cdot (30 + 6 + 0.5)$$

# Tsinghua Bamboo Strips

- Example:  $24 \cdot 36.5 = ?$

| 1/2              | 1   | 2   | 3                | 4   | 5                | 6   | 7                | 8   | 9                | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |     |
|------------------|-----|-----|------------------|-----|------------------|-----|------------------|-----|------------------|-----|------|------|------|------|------|------|------|------|-----|
| 45               | 90  | 180 | 270              | 360 | 450              | 540 | 630              | 720 | 810              | 900 | 1800 | 2700 | 3600 | 4500 | 5400 | 6300 | 7200 | 8100 | 90  |
| 40               | 80  | 160 | 240              | 320 | 400              | 480 | 560              | 640 | 720              | 800 | 1600 | 2400 | 3200 | 4000 | 4800 | 5600 | 6400 | 7200 | 80  |
| 35               | 70  | 140 | 210              | 280 | 350              | 420 | 490              | 560 | 630              | 700 | 1400 | 2100 | 2800 | 3500 | 4200 | 4900 | 5600 | 6300 | 70  |
| 30               | 60  | 120 | 180              | 240 | 300              | 360 | 420              | 480 | 540              | 600 | 1200 | 1800 | 2400 | 3000 | 3600 | 4200 | 4800 | 5400 | 60  |
| 25               | 50  | 100 | 150              | 200 | 250              | 300 | 350              | 400 | 450              | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 50  |
| 20               | 40  | 80  | 120              | 160 | 200              | 240 | 280              | 320 | 360              | 400 | 800  | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600 | 40  |
| 15               | 30  | 60  | 90               | 120 | 150              | 180 | 210              | 240 | 270              | 300 | 600  | 900  | 1200 | 1500 | 1800 | 2100 | 2400 | 2700 | 30  |
| 10               | 20  | 40  | 60               | 80  | 100              | 120 | 140              | 160 | 180              | 200 | 400  | 600  | 800  | 1000 | 1200 | 1400 | 1600 | 1800 | 20  |
| 5                | 10  | 20  | 30               | 40  | 50               | 60  | 70               | 80  | 90               | 100 | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 10  |
| 4 <sup>1/2</sup> | 9   | 18  | 27               | 36  | 45               | 54  | 63               | 72  | 81               | 90  | 180  | 270  | 360  | 450  | 540  | 630  | 720  | 810  | 9   |
| 4                | 8   | 16  | 24               | 32  | 40               | 48  | 56               | 64  | 72               | 80  | 160  | 240  | 320  | 400  | 480  | 560  | 640  | 720  | 8   |
| 3 <sup>1/2</sup> | 7   | 14  | 21               | 28  | 35               | 42  | 49               | 56  | 63               | 70  | 140  | 210  | 280  | 350  | 420  | 490  | 560  | 630  | 7   |
| 3                | 6   | 12  | 18               | 24  | 30               | 36  | 42               | 48  | 54               | 60  | 120  | 180  | 240  | 300  | 360  | 420  | 480  | 540  | 6   |
| 2 <sup>1/2</sup> | 5   | 10  | 15               | 20  | 25               | 30  | 35               | 40  | 45               | 50  | 100  | 150  | 200  | 250  | 300  | 350  | 400  | 450  | 5   |
| 2                | 4   | 8   | 12               | 16  | 20               | 24  | 28               | 32  | 36               | 40  | 80   | 120  | 160  | 200  | 240  | 280  | 320  | 360  | 4   |
| 1 <sup>1/2</sup> | 3   | 6   | 9                | 12  | 15               | 18  | 21               | 24  | 27               | 30  | 60   | 90   | 120  | 150  | 180  | 210  | 240  | 270  | 3   |
| 1                | 2   | 4   | 6                | 8   | 10               | 12  | 14               | 16  | 18               | 20  | 40   | 60   | 80   | 100  | 120  | 140  | 160  | 180  | 2   |
| 1/2              | 1   | 2   | 3                | 4   | 5                | 6   | 7                | 8   | 9                | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 1   |
| 1/4              | 1/2 | 1   | 1 <sup>1/2</sup> | 2   | 2 <sup>1/2</sup> | 3   | 3 <sup>1/2</sup> | 4   | 4 <sup>1/2</sup> | 5   | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | 1/2 |

$$24 \cdot 36.5 = (20 + 4) \cdot (30 + 6 + 0.5)$$

# Tsinghua Bamboo Strips

- Example:  $24 \cdot 36.5 = ?$

| 1/2             | 1   | 2   | 3               | 4   | 5               | 6   | 7               | 8   | 9               | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |     |
|-----------------|-----|-----|-----------------|-----|-----------------|-----|-----------------|-----|-----------------|-----|------|------|------|------|------|------|------|------|-----|
| 45              | 90  | 180 | 270             | 360 | 450             | 540 | 630             | 720 | 810             | 900 | 1800 | 2700 | 3600 | 4500 | 5400 | 6300 | 7200 | 8100 | 90  |
| 40              | 80  | 160 | 240             | 320 | 400             | 480 | 560             | 640 | 720             | 800 | 1600 | 2400 | 3200 | 4000 | 4800 | 5600 | 6400 | 7200 | 80  |
| 35              | 70  | 140 | 210             | 280 | 350             | 420 | 490             | 560 | 630             | 700 | 1400 | 2100 | 2800 | 3500 | 4200 | 4900 | 5600 | 6300 | 70  |
| 30              | 60  | 120 | 180             | 240 | 300             | 360 | 420             | 480 | 540             | 600 | 1200 | 1800 | 2400 | 3000 | 3600 | 4200 | 4800 | 5400 | 60  |
| 25              | 50  | 100 | 150             | 200 | 250             | 300 | 350             | 400 | 450             | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 50  |
| 20              | 40  | 80  | 120             | 160 | 200             | 240 | 280             | 320 | 360             | 400 | 800  | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600 | 40  |
| 15              | 30  | 60  | 90              | 120 | 150             | 180 | 210             | 240 | 270             | 300 | 600  | 900  | 1200 | 1500 | 1800 | 2100 | 2400 | 2700 | 30  |
| 10              | 20  | 40  | 60              | 80  | 100             | 120 | 140             | 160 | 180             | 200 | 400  | 600  | 800  | 1000 | 1200 | 1400 | 1600 | 1800 | 20  |
| 5               | 10  | 20  | 30              | 40  | 50              | 60  | 70              | 80  | 90              | 100 | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 10  |
| 4 $\frac{1}{2}$ | 9   | 18  | 27              | 36  | 45              | 54  | 63              | 72  | 81              | 90  | 180  | 270  | 360  | 450  | 540  | 630  | 720  | 810  | 9   |
| 4               | 8   | 16  | 24              | 32  | 40              | 48  | 56              | 64  | 72              | 80  | 160  | 240  | 320  | 400  | 480  | 560  | 640  | 720  | 8   |
| 3 $\frac{1}{2}$ | 7   | 14  | 21              | 28  | 35              | 42  | 49              | 56  | 63              | 70  | 140  | 210  | 280  | 350  | 420  | 490  | 560  | 630  | 7   |
| 3               | 6   | 12  | 18              | 24  | 30              | 36  | 42              | 48  | 54              | 60  | 120  | 180  | 240  | 300  | 360  | 420  | 480  | 540  | 6   |
| 2 $\frac{1}{2}$ | 5   | 10  | 15              | 20  | 25              | 30  | 35              | 40  | 45              | 50  | 100  | 150  | 200  | 250  | 300  | 350  | 400  | 450  | 5   |
| 2               | 4   | 8   | 12              | 16  | 20              | 24  | 28              | 32  | 36              | 40  | 80   | 120  | 160  | 200  | 240  | 280  | 320  | 360  | 4   |
| 1 $\frac{1}{2}$ | 3   | 6   | 9               | 12  | 15              | 18  | 21              | 24  | 27              | 30  | 60   | 90   | 120  | 150  | 180  | 210  | 240  | 270  | 3   |
| 1               | 2   | 4   | 6               | 8   | 10              | 12  | 14              | 16  | 18              | 20  | 40   | 60   | 80   | 100  | 120  | 140  | 160  | 180  | 2   |
| 1 $\frac{1}{2}$ | 1   | 2   | 3               | 4   | 5               | 6   | 7               | 8   | 9               | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 1   |
| 1/4             | 1/2 | 1   | 1 $\frac{1}{2}$ | 2   | 2 $\frac{1}{2}$ | 3   | 3 $\frac{1}{2}$ | 4   | 4 $\frac{1}{2}$ | 5   | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | 1/2 |

$$24 \cdot 36.5 = (20 + 4) \cdot (30 + 6 + 0.5)$$

# Tsinghua Bamboo Strips

• Example:  $24 \cdot 36.5 = ?$

| 1/2            | 1              | 2   | 3              | 4   | 5              | 6   | 7              | 8   | 9              | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |                |
|----------------|----------------|-----|----------------|-----|----------------|-----|----------------|-----|----------------|-----|------|------|------|------|------|------|------|------|----------------|
| 45             | 90             | 180 | 270            | 360 | 450            | 540 | 630            | 720 | 810            | 900 | 1800 | 2700 | 3600 | 4500 | 5400 | 6300 | 7200 | 8100 | 90             |
| 40             | 80             | 160 | 240            | 320 | 400            | 480 | 560            | 640 | 720            | 800 | 1600 | 2400 | 3200 | 4000 | 4800 | 5600 | 6400 | 7200 | 80             |
| 35             | 70             | 140 | 210            | 280 | 350            | 420 | 490            | 560 | 630            | 700 | 1400 | 2100 | 2800 | 3500 | 4200 | 4900 | 5600 | 6300 | 70             |
| 30             | 60             | 120 | 180            | 240 | 300            | 360 | 420            | 480 | 540            | 600 | 1200 | 1800 | 2400 | 3000 | 3600 | 4200 | 4800 | 5400 | 60             |
| 25             | 50             | 100 | 150            | 200 | 250            | 300 | 350            | 400 | 450            | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 50             |
| 20             | 40             | 80  | 120            | 160 | 200            | 240 | 280            | 320 | 360            | 400 | 800  | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600 | 40             |
| 15             | 30             | 60  | 90             | 120 | 150            | 180 | 210            | 240 | 270            | 300 | 600  | 900  | 1200 | 1500 | 1800 | 2100 | 2400 | 2700 | 30             |
| 10             | 20             | 40  | 60             | 80  | 100            | 120 | 140            | 160 | 180            | 200 | 400  | 600  | 800  | 1000 | 1200 | 1400 | 1600 | 1800 | 20             |
| 5              | 10             | 20  | 30             | 40  | 50             | 60  | 70             | 80  | 90             | 100 | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 10             |
| $4\frac{1}{2}$ | 9              | 18  | 27             | 36  | 45             | 54  | 63             | 72  | 81             | 90  | 180  | 270  | 360  | 450  | 540  | 630  | 720  | 810  | 9              |
| 4              | 8              | 16  | 24             | 32  | 40             | 48  | 56             | 64  | 72             | 80  | 160  | 240  | 320  | 400  | 480  | 560  | 640  | 720  | 8              |
| $3\frac{1}{2}$ | 7              | 14  | 21             | 28  | 35             | 42  | 49             | 56  | 63             | 70  | 140  | 210  | 280  | 350  | 420  | 490  | 560  | 630  | 7              |
| 3              | 6              | 12  | 18             | 24  | 30             | 36  | 42             | 48  | 54             | 60  | 120  | 180  | 240  | 300  | 360  | 420  | 480  | 540  | 6              |
| $2\frac{1}{2}$ | 5              | 10  | 15             | 20  | 25             | 30  | 35             | 40  | 45             | 50  | 100  | 150  | 200  | 250  | 300  | 350  | 400  | 450  | 5              |
| 2              | 4              | 8   | 12             | 16  | 20             | 24  | 28             | 32  | 36             | 40  | 80   | 120  | 160  | 200  | 240  | 280  | 320  | 360  | 4              |
| $1\frac{1}{2}$ | 3              | 6   | 9              | 12  | 15             | 18  | 21             | 24  | 27             | 30  | 60   | 90   | 120  | 150  | 180  | 210  | 240  | 270  | 3              |
| 1              | 2              | 4   | 6              | 8   | 10             | 12  | 14             | 16  | 18             | 20  | 40   | 60   | 80   | 100  | 120  | 140  | 160  | 180  | 2              |
| $1\frac{1}{2}$ | 1              | 2   | 3              | 4   | 5              | 6   | 7              | 8   | 9              | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 1              |
| $1\frac{1}{4}$ | $1\frac{1}{2}$ | 1   | $1\frac{1}{2}$ | 2   | $2\frac{1}{2}$ | 3   | $3\frac{1}{2}$ | 4   | $4\frac{1}{2}$ | 5   | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | $1\frac{1}{2}$ |

$$24 \cdot 36.5 = (20 + 4) \cdot (30 + 6 + 0.5)$$

# Tsinghua Bamboo Strips

- Example:  $24 \cdot 36.5 = ?$

| 1/2            | 1              | 2   | 3              | 4   | 5              | 6   | 7              | 8   | 9              | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |                |
|----------------|----------------|-----|----------------|-----|----------------|-----|----------------|-----|----------------|-----|------|------|------|------|------|------|------|------|----------------|
| 45             | 90             | 180 | 270            | 360 | 450            | 540 | 630            | 720 | 810            | 900 | 1800 | 2700 | 3600 | 4500 | 5400 | 6300 | 7200 | 8100 | 90             |
| 40             | 80             | 160 | 240            | 320 | 400            | 480 | 560            | 640 | 720            | 800 | 1600 | 2400 | 3200 | 4000 | 4800 | 5600 | 6400 | 7200 | 80             |
| 35             | 70             | 140 | 210            | 280 | 350            | 420 | 490            | 560 | 630            | 700 | 1400 | 2100 | 2800 | 3500 | 4200 | 4900 | 5600 | 6300 | 70             |
| 30             | 60             | 120 | 180            | 240 | 300            | 360 | 420            | 480 | 540            | 600 | 1200 | 1800 | 2400 | 3000 | 3600 | 4200 | 4800 | 5400 | 60             |
| 25             | 50             | 100 | 150            | 200 | 250            | 300 | 350            | 400 | 450            | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 50             |
| 20             | 40             | 80  | 120            | 160 | 200            | 240 | 280            | 320 | 360            | 400 | 800  | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600 | 40             |
| 15             | 30             | 60  | 90             | 120 | 150            | 180 | 210            | 240 | 270            | 300 | 600  | 900  | 1200 | 1500 | 1800 | 2100 | 2400 | 2700 | 30             |
| 10             | 20             | 40  | 60             | 80  | 100            | 120 | 140            | 160 | 180            | 200 | 400  | 600  | 800  | 1000 | 1200 | 1400 | 1600 | 1800 | 20             |
| 5              | 10             | 20  | 30             | 40  | 50             | 60  | 70             | 80  | 90             | 100 | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 10             |
| $4\frac{1}{2}$ | 9              | 18  | 27             | 36  | 45             | 54  | 63             | 72  | 81             | 90  | 180  | 270  | 360  | 450  | 540  | 630  | 720  | 810  | 9              |
| 4              | 8              | 16  | 24             | 32  | 40             | 48  | 56             | 64  | 72             | 80  | 160  | 240  | 320  | 400  | 480  | 560  | 640  | 720  | 8              |
| $3\frac{1}{2}$ | 7              | 14  | 21             | 28  | 35             | 42  | 49             | 56  | 63             | 70  | 140  | 210  | 280  | 350  | 420  | 490  | 560  | 630  | 7              |
| 3              | 6              | 12  | 18             | 24  | 30             | 36  | 42             | 48  | 54             | 60  | 120  | 180  | 240  | 300  | 360  | 420  | 480  | 540  | 6              |
| $2\frac{1}{2}$ | 5              | 10  | 15             | 20  | 25             | 30  | 35             | 40  | 45             | 50  | 100  | 150  | 200  | 250  | 300  | 350  | 400  | 450  | 5              |
| 2              | 4              | 8   | 12             | 16  | 20             | 24  | 28             | 32  | 36             | 40  | 80   | 120  | 160  | 200  | 240  | 280  | 320  | 360  | 4              |
| $1\frac{1}{2}$ | 3              | 6   | 9              | 12  | 15             | 18  | 21             | 24  | 27             | 30  | 60   | 90   | 120  | 150  | 180  | 210  | 240  | 270  | 3              |
| 1              | 2              | 4   | 6              | 8   | 10             | 12  | 14             | 16  | 18             | 20  | 40   | 60   | 80   | 100  | 120  | 140  | 160  | 180  | 2              |
| $1\frac{1}{2}$ | 1              | 2   | 3              | 4   | 5              | 6   | 7              | 8   | 9              | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 1              |
| $1\frac{1}{4}$ | $1\frac{1}{2}$ | 1   | $1\frac{1}{2}$ | 2   | $2\frac{1}{2}$ | 3   | $3\frac{1}{2}$ | 4   | $4\frac{1}{2}$ | 5   | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | $1\frac{1}{2}$ |

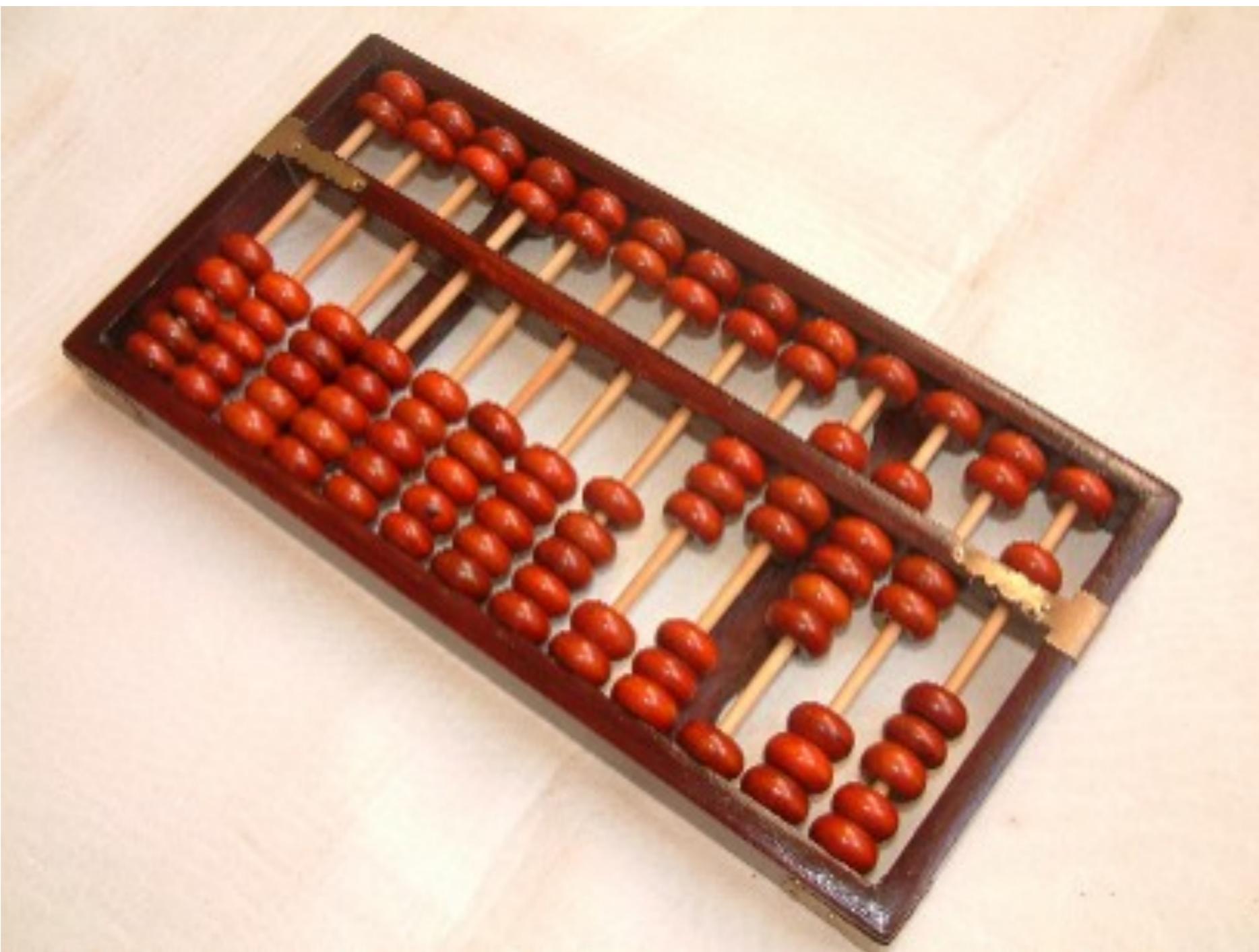
$$24 \cdot 36.5 = (20 + 4) \cdot (30 + 6 + 0.5)$$

$$= 20 \cdot 30 + 20 \cdot 6 + 20 \cdot 0.5 + 4 \cdot 30 + 4 \cdot 6 + 4 \cdot 0.5$$

# Tsinghua Bamboo Strips

- Example:  $24 \cdot 36.5 = ?$

| 1/2            | 1              | 2   | 3              | 4   | 5              | 6   | 7              | 8   | 9              | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |                |
|----------------|----------------|-----|----------------|-----|----------------|-----|----------------|-----|----------------|-----|------|------|------|------|------|------|------|------|----------------|
| 45             | 90             | 180 | 270            | 360 | 450            | 540 | 630            | 720 | 810            | 900 | 1800 | 2700 | 3600 | 4500 | 5400 | 6300 | 7200 | 8100 | 90             |
| 40             | 80             | 160 | 240            | 320 | 400            | 480 | 560            | 640 | 720            | 800 | 1600 | 2400 | 3200 | 4000 | 4800 | 5600 | 6400 | 7200 | 80             |
| 35             | 70             | 140 | 210            | 280 | 350            | 420 | 490            | 560 | 630            | 700 | 1400 | 2100 | 2800 | 3500 | 4200 | 4900 | 5600 | 6300 | 70             |
| 30             | 60             | 120 | 180            | 240 | 300            | 360 | 420            | 480 | 540            | 600 | 1200 | 1800 | 2400 | 3000 | 3600 | 4200 | 4800 | 5400 | 60             |
| 25             | 50             | 100 | 150            | 200 | 250            | 300 | 350            | 400 | 450            | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 50             |
| 20             | 40             | 80  | 120            | 160 | 200            | 240 | 280            | 320 | 360            | 400 | 800  | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600 | 40             |
| 15             | 30             | 60  | 90             | 120 | 150            | 180 | 210            | 240 | 270            | 300 | 600  | 900  | 1200 | 1500 | 1800 | 2100 | 2400 | 2700 | 30             |
| 10             | 20             | 40  | 60             | 80  | 100            | 120 | 140            | 160 | 180            | 200 | 400  | 600  | 800  | 1000 | 1200 | 1400 | 1600 | 1800 | 20             |
| 5              | 10             | 20  | 30             | 40  | 50             | 60  | 70             | 80  | 90             | 100 | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 10             |
| $4\frac{1}{2}$ | 9              | 18  | 27             | 36  | 45             | 54  | 63             | 72  | 81             | 90  | 180  | 270  | 360  | 450  | 540  | 630  | 720  | 810  | 9              |
| 4              | 8              | 16  | 24             | 32  | 40             | 48  | 56             | 64  | 72             | 80  | 160  | 240  | 320  | 400  | 480  | 560  | 640  | 720  | 8              |
| $3\frac{1}{2}$ | 7              | 14  | 21             | 28  | 35             | 42  | 49             | 56  | 63             | 70  | 140  | 210  | 280  | 350  | 420  | 490  | 560  | 630  | 7              |
| 3              | 6              | 12  | 18             | 24  | 30             | 36  | 42             | 48  | 54             | 60  | 120  | 180  | 240  | 300  | 360  | 420  | 480  | 540  | 6              |
| $2\frac{1}{2}$ | 5              | 10  | 15             | 20  | 25             | 30  | 35             | 40  | 45             | 50  | 100  | 150  | 200  | 250  | 300  | 350  | 400  | 450  | 5              |
| 2              | 4              | 8   | 12             | 16  | 20             | 24  | 28             | 32  | 36             | 40  | 80   | 120  | 160  | 200  | 240  | 280  | 320  | 360  | 4              |
| $1\frac{1}{2}$ | 3              | 6   | 9              | 12  | 15             | 18  | 21             | 24  | 27             | 30  | 60   | 90   | 120  | 150  | 180  | 210  | 240  | 270  | 3              |
| 1              | 2              | 4   | 6              | 8   | 10             | 12  | 14             | 16  | 18             | 20  | 40   | 60   | 80   | 100  | 120  | 140  | 160  | 180  | 2              |
| $1\frac{1}{2}$ | 1              | 2   | 3              | 4   | 5              | 6   | 7              | 8   | 9              | 10  | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 1              |
| $1\frac{1}{4}$ | $1\frac{1}{2}$ | 1   | $1\frac{1}{2}$ | 2   | $2\frac{1}{2}$ | 3   | $3\frac{1}{2}$ | 4   | $4\frac{1}{2}$ | 5   | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | $1\frac{1}{2}$ |


$$24 \cdot 36.5 = (20 + 4) \cdot (30 + 6 + 0.5)$$

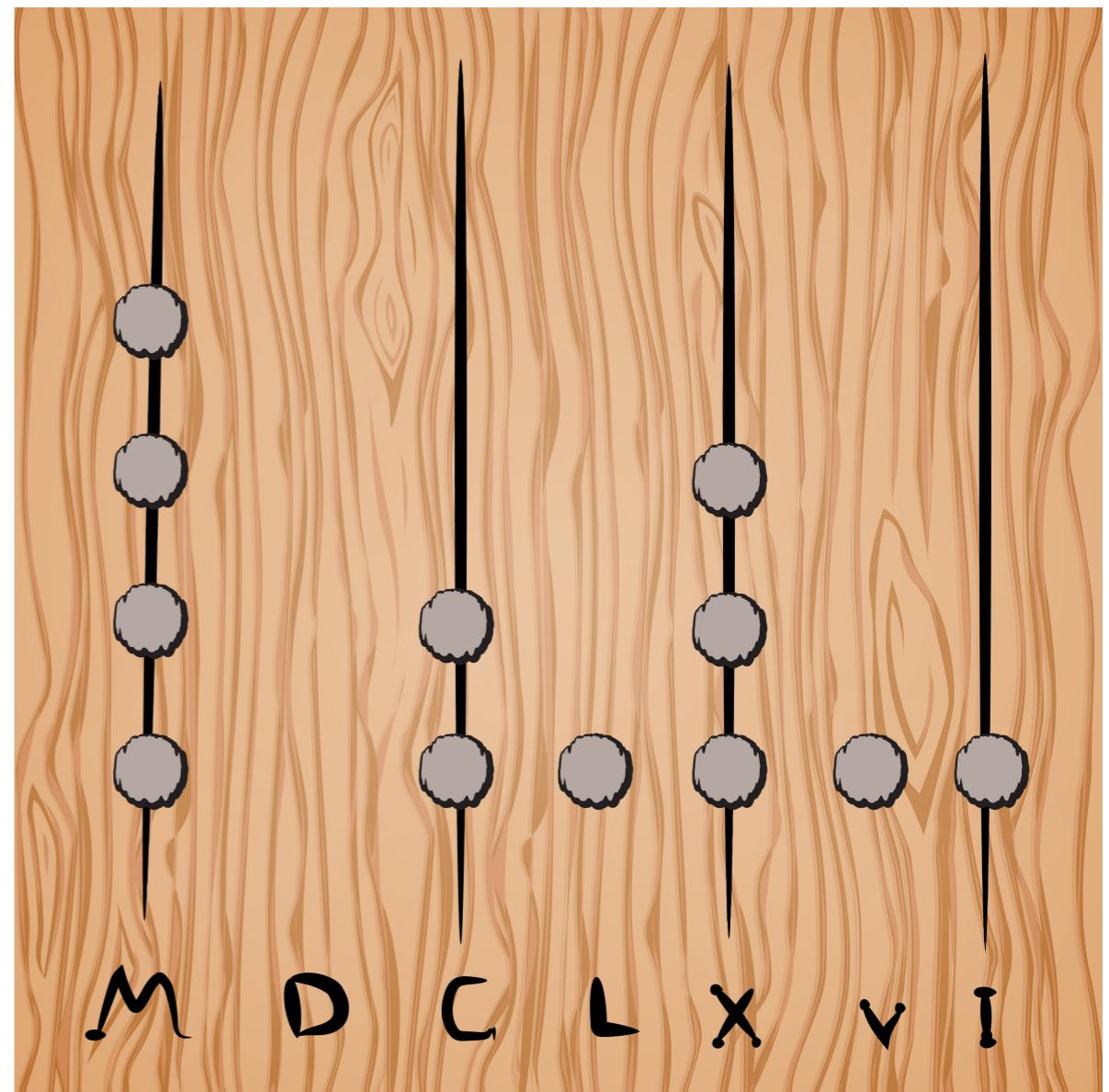
$$= 20 \cdot 30 + 20 \cdot 6 + 20 \cdot 0.5 + 4 \cdot 30 + 4 \cdot 6 + 4 \cdot 0.5$$

= Look up on table, then add together

# Ancient Calculators

# Abacus

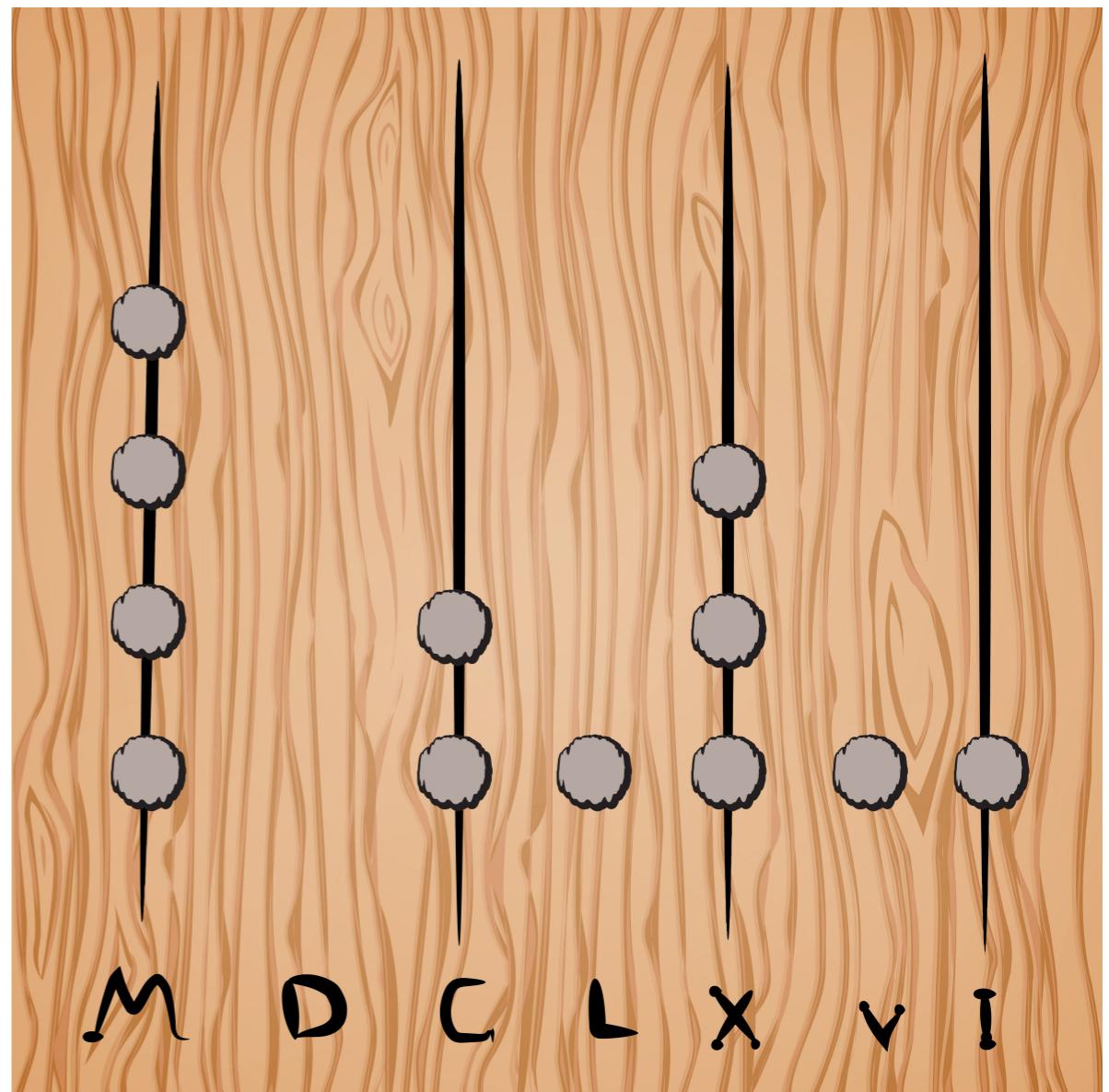



# Counting Board

# Counting Board

- Appeared in many forms and many places.

# Counting Board


- Appeared in many forms and many places.
- This is what a Roman one might look like.



Represents 4,286

# Counting Board

- Appeared in many forms and many places.
- This is what a Roman one might look like.
- Ancient Chinese mathematicians leveraged them to begin an important area of math. (Chapter 2)



Represents 4,286

# The Incan Empire



# Video: The Incan Empire



# Video: The Incan Empire



# The Incan Empire

# The Incan Empire

- The Inca were a great but relatively short-lived empire, peaking in the 16th century.

# The Incan Empire

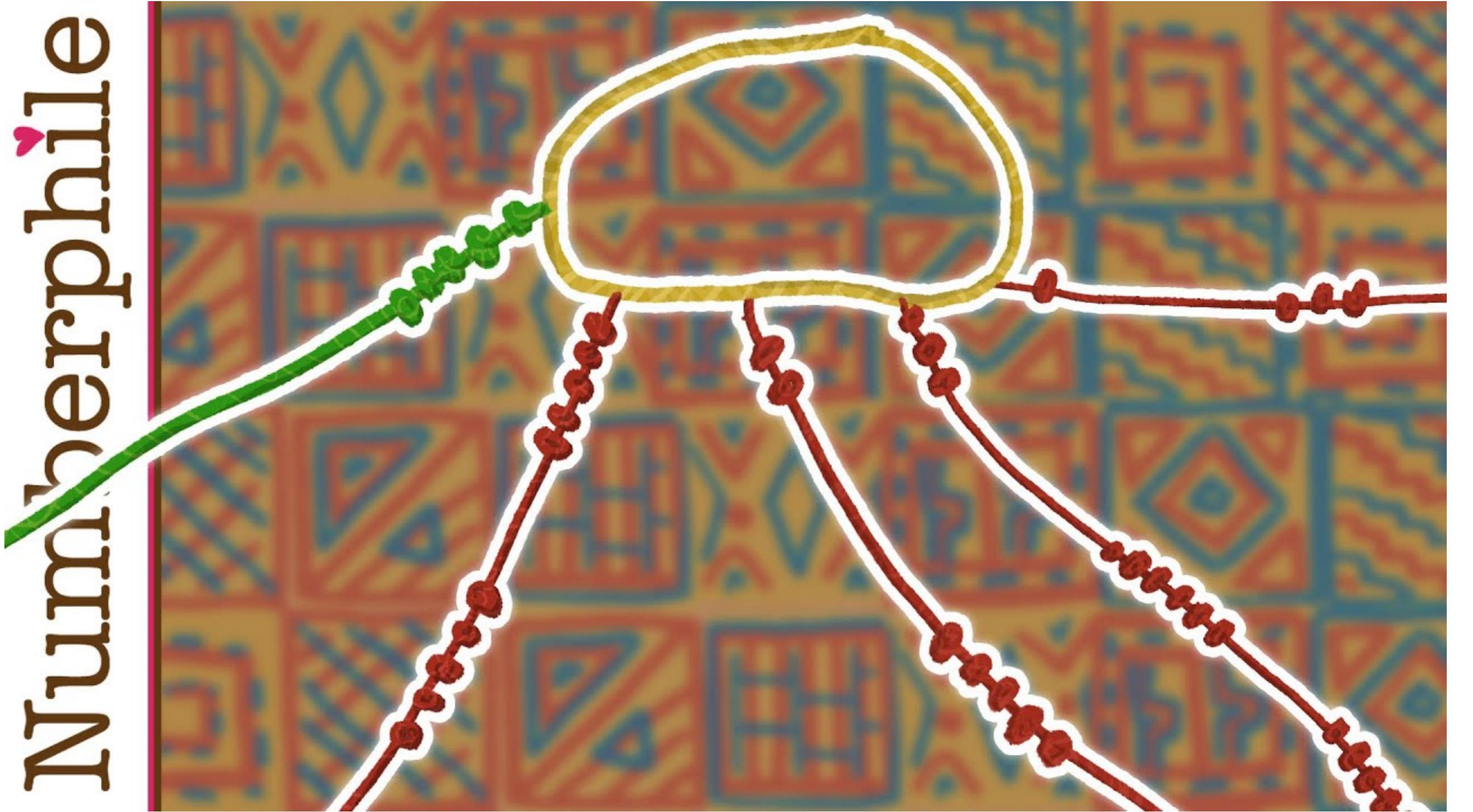
- The Inca were a great but relatively short-lived empire, peaking in the 16th century.
- They did not have a written language.

# The Incan Empire

- The Inca were a great but relatively short-lived empire, peaking in the 16th century.
- They did not have a written language.
- How do you record numbers and do math without writing?

# The Incan Empire

- The Inca were a great but relatively short-lived empire, peaking in the 16th century.
- They did not have a written language.
- How do you record numbers and do math without writing?
- The Inca used what is called a *quipu*.


# Video: Quipus



# Video: Quipus

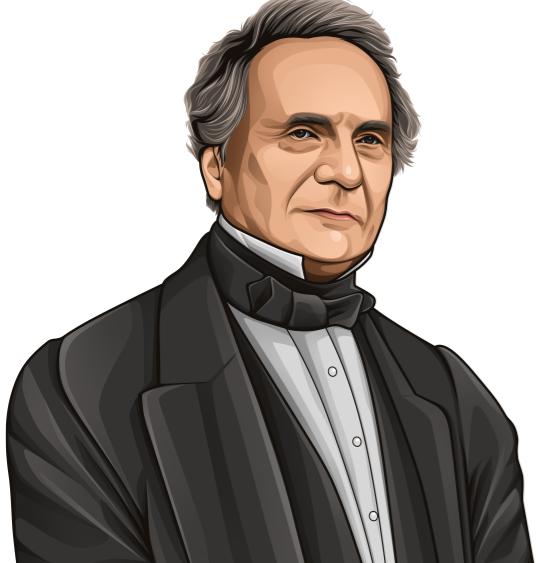


# Video: Quipus



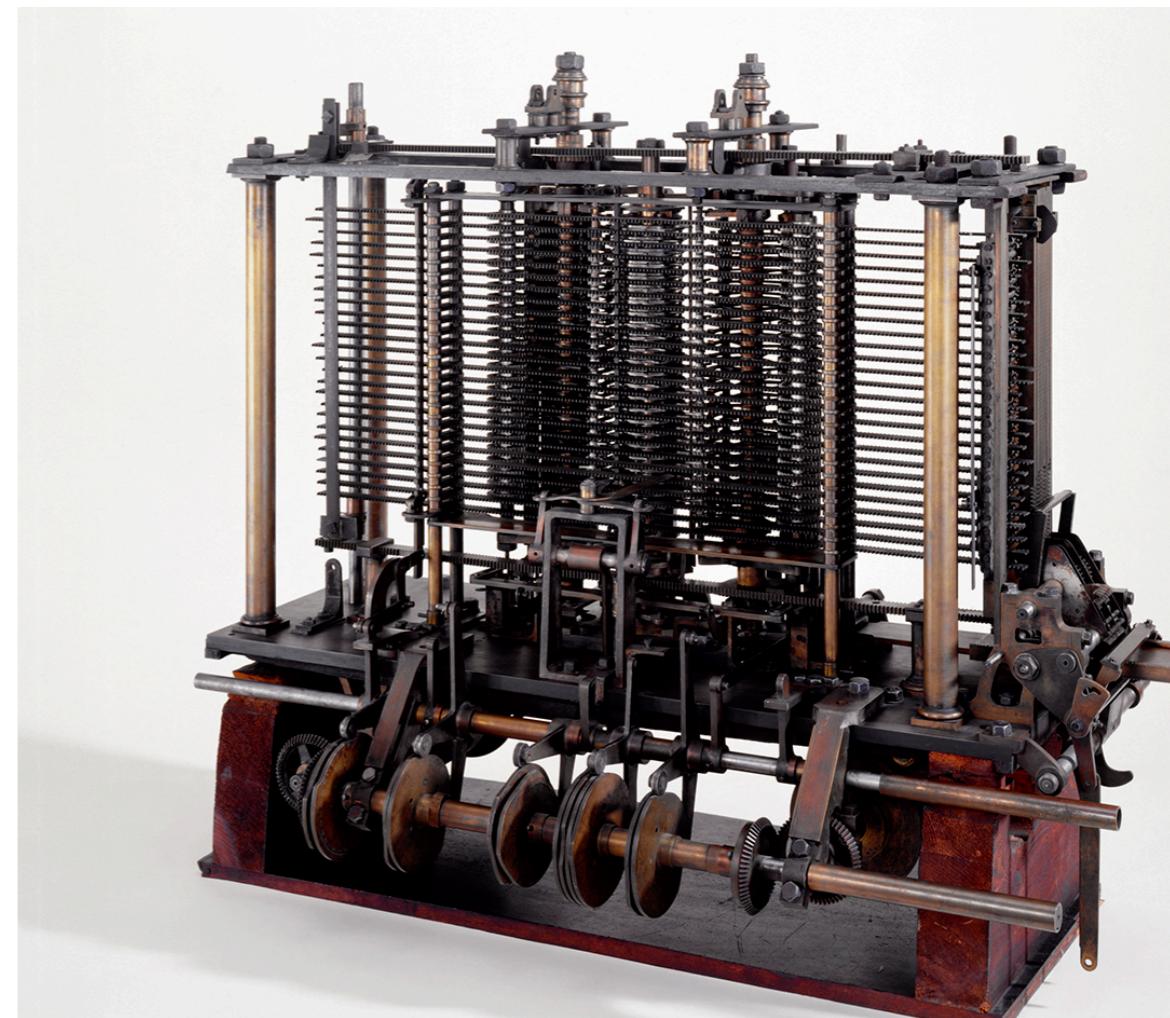
# Video: Quipus




# The Aftermath

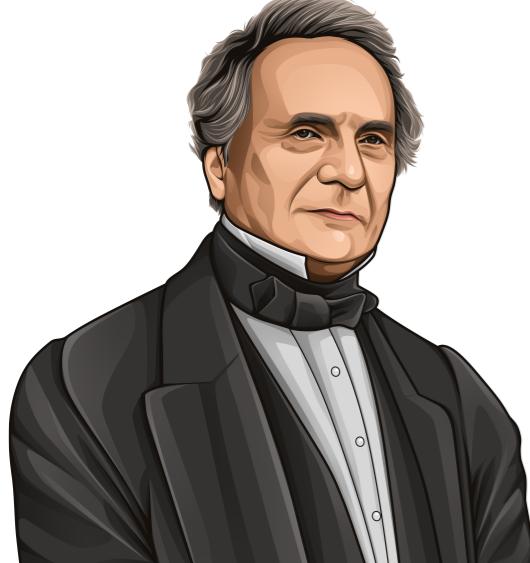
# The Aftermath

- What about modern computers?


# The Aftermath

- What about modern computers?
- Mechanical computers were developed before electric computers. They ran on punch cards.

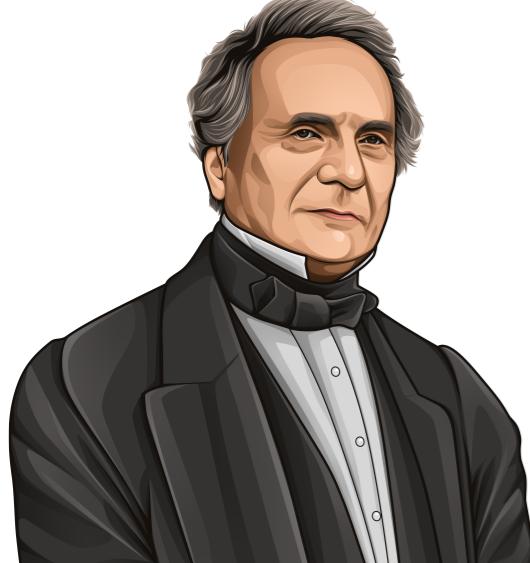



# The Aftermath

- What about modern computers?
- Mechanical computers were developed before electric computers. They ran on punch cards.
- Charles Babbage invented the difference engine to perform computations. He later invented the analytical engine to do more complex tasks. It was the first “modern” computer. Portion of it pictured here —>






# The Aftermath



# The Aftermath



- Ada Lovelace realized its potential and became the world's first computer programmer.



# The Aftermath



- Ada Lovelace realized its potential and became the world's first computer programmer.
- The first algorithm written specifically to be run on a computer was designed to compute Bernoulli numbers.



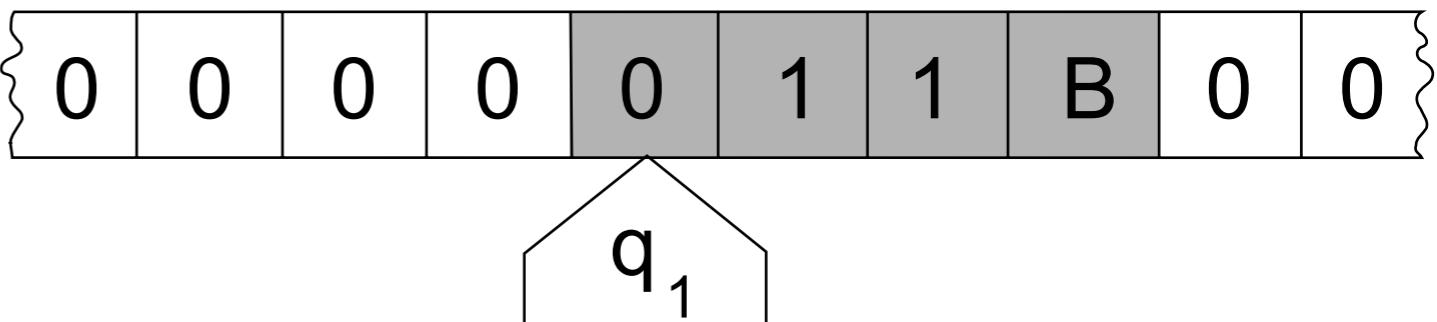
Diagram for the computation by the Engine of the Numbers of Bernoulli. See Note G. (page 722 *et seq.*)

| Number of Operation.                                              | Nature of Operation. | Variables acted upon.      | Variables receiving results. | Indication of change in the value on any Variable.                     | Statement of Results.                                                          | Data.             |                   | Working Variables. |                   |                   |                   |                   |                   |                   |                      |                                                                                 |                                                                                  | Result Variables.    |                                              |                      |                      |
|-------------------------------------------------------------------|----------------------|----------------------------|------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------|----------------------------------------------|----------------------|----------------------|
|                                                                   |                      |                            |                              |                                                                        |                                                                                | $^1V_1$<br>0<br>1 | $^1V_2$<br>0<br>2 | $^1V_3$<br>0<br>4  | $^0V_4$<br>0<br>0 | $^0V_5$<br>0<br>0 | $^0V_6$<br>0<br>0 | $^0V_7$<br>0<br>0 | $^0V_8$<br>0<br>0 | $^0V_9$<br>0<br>0 | $^0V_{10}$<br>0<br>0 | $^0V_{11}$<br>0<br>0                                                            | $^0V_{12}$<br>0<br>0                                                             | $^0V_{13}$<br>0<br>0 | $^1V_{21}$<br>0<br>0                         | $^1V_{22}$<br>0<br>0 | $^1V_{23}$<br>0<br>0 |
| 1                                                                 | $\times$             | $^1V_2 \times ^1V_3$       | $^1V_4, ^1V_5, ^1V_6$        | $\begin{cases} ^1V_2 = ^1V_2 \\ ^1V_3 = ^1V_3 \end{cases}$             | $= 2n$                                                                         | ...               | 2                 | n                  | 2n                | 2n                | 2n                |                   |                   |                   |                      |                                                                                 |                                                                                  | $B_1$                |                                              |                      |                      |
| 2                                                                 | $-$                  | $^1V_4 - ^1V_1$            | $^2V_4$                      | $\begin{cases} ^1V_4 = ^2V_4 \\ ^1V_1 = ^1V_1 \end{cases}$             | $= 2n-1$                                                                       | 1                 | ...               | ...                | 2n-1              |                   |                   |                   |                   |                   |                      |                                                                                 |                                                                                  | $B_2$                |                                              |                      |                      |
| 3                                                                 | $+$                  | $^1V_5 + ^1V_1$            | $^2V_5$                      | $\begin{cases} ^1V_5 = ^2V_5 \\ ^1V_1 = ^1V_1 \end{cases}$             | $= 2n+1$                                                                       | 1                 | ...               | ...                | ...               | 2n+1              |                   |                   |                   |                   |                      |                                                                                 |                                                                                  | $B_3$                |                                              |                      |                      |
| 4                                                                 | $\div$               | $^2V_6 \div ^2V_4$         | $^1V_{11}$                   | $\begin{cases} ^2V_5 = ^0V_5 \\ ^2V_4 = ^0V_4 \end{cases}$             | $= \frac{2n-1}{2n+1}$                                                          | ...               | ...               | 0                  | 0                 | ...               | ...               | ...               | ...               | ...               |                      |                                                                                 | $\frac{2n-1}{2n+1}$                                                              |                      |                                              |                      |                      |
| 5                                                                 | $\div$               | $^1V_{11} \div ^1V_2$      | $^2V_{11}$                   | $\begin{cases} ^1V_{11} = ^2V_{11} \\ ^1V_2 = ^1V_2 \end{cases}$       | $= \frac{1}{2} \cdot \frac{2n-1}{2n+1}$                                        | ...               | 2                 | ...                | ...               | ...               | ...               | ...               | ...               | ...               |                      |                                                                                 | $\frac{1}{2} \cdot \frac{2n-1}{2n+1}$                                            |                      |                                              |                      |                      |
| 6                                                                 | $-$                  | $^0V_{13} - ^2V_{11}$      | $^1V_{13}$                   | $\begin{cases} ^2V_{11} = ^0V_{11} \\ ^0V_{13} = ^1V_{13} \end{cases}$ | $= -\frac{1}{2} \cdot \frac{2n-1}{2n+1} = A_0$                                 | ...               | ...               | ...                | ...               | ...               | ...               | ...               | ...               | ...               |                      |                                                                                 | 0                                                                                | ...                  | $-\frac{1}{2} \cdot \frac{2n-1}{2n+1} = A_0$ |                      |                      |
| 7                                                                 | $-$                  | $^1V_3 - ^1V_1$            | $^1V_{10}$                   | $\begin{cases} ^1V_3 = ^1V_3 \\ ^1V_1 = ^1V_1 \end{cases}$             | $= n-1 (= 3)$                                                                  | 1                 | ...               | n                  | ...               | ...               | ...               | ...               | ...               | ...               | n-1                  |                                                                                 |                                                                                  |                      |                                              |                      |                      |
| 8                                                                 | $+$                  | $^1V_2 + ^0V_7$            | $^1V_7$                      | $\begin{cases} ^1V_2 = ^1V_2 \\ ^0V_7 = ^1V_7 \end{cases}$             | $= 2+0=2$                                                                      | ...               | 2                 | ...                | ...               | ...               | ...               | 2                 |                   |                   |                      |                                                                                 |                                                                                  |                      |                                              |                      |                      |
| 9                                                                 | $\div$               | $^1V_6 \div ^1V_7$         | $^3V_{11}$                   | $\begin{cases} ^1V_6 = ^1V_6 \\ ^0V_{11} = ^3V_{11} \end{cases}$       | $= \frac{2n}{2} = A_1$                                                         | ...               | ...               | ...                | ...               | 2n                | 2                 | ...               | ...               | ...               |                      |                                                                                 | $\frac{2n}{2} = A_1$                                                             |                      |                                              |                      |                      |
| 10                                                                | $\times$             | $^1V_{21} \times ^3V_{11}$ | $^1V_{12}$                   | $\begin{cases} ^1V_{21} = ^1V_{21} \\ ^3V_{11} = ^3V_{11} \end{cases}$ | $= B_1 \cdot \frac{2n}{2} = B_1 A_1$                                           | ...               | ...               | ...                | ...               | ...               | ...               | ...               | ...               | ...               |                      | $\frac{2n}{2} = A_1$                                                            | $B_1 \cdot \frac{2n}{2} = B_1 A_1$                                               |                      | $B_1$                                        |                      |                      |
| 11                                                                | $+$                  | $^1V_{12} + ^1V_{13}$      | $^2V_{13}$                   | $\begin{cases} ^1V_{12} = ^2V_{12} \\ ^1V_{13} = ^2V_{13} \end{cases}$ | $= -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2}$              | ...               | ...               | ...                | ...               | ...               | ...               | ...               | ...               | ...               |                      | 0                                                                               | $\left\{ -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2} \right\}$ |                      |                                              |                      |                      |
| 12                                                                | $-$                  | $^1V_{10} - ^1V_1$         | $^2V_{10}$                   | $\begin{cases} ^1V_{10} = ^2V_{10} \\ ^1V_1 = ^1V_1 \end{cases}$       | $= n-2 (= 2)$                                                                  | 1                 | ...               | ...                | ...               | ...               | ...               | ...               | ...               | ...               | n-2                  |                                                                                 |                                                                                  |                      |                                              |                      |                      |
| 13                                                                | $-$                  | $^1V_6 - ^1V_1$            | $^2V_6$                      | $\begin{cases} ^1V_6 = ^2V_6 \\ ^1V_1 = ^1V_1 \end{cases}$             | $= 2n-1$                                                                       | 1                 | ...               | ...                | ...               | 2n-1              |                   |                   |                   |                   |                      |                                                                                 |                                                                                  |                      |                                              |                      |                      |
| 14                                                                | $+$                  | $^1V_1 + ^1V_7$            | $^2V_7$                      | $\begin{cases} ^1V_1 = ^1V_1 \\ ^1V_7 = ^2V_7 \end{cases}$             | $= 2+1=3$                                                                      | 1                 | ...               | ...                | ...               | ...               | 3                 |                   |                   |                   |                      |                                                                                 |                                                                                  |                      |                                              |                      |                      |
| 15                                                                | $\div$               | $^2V_6 \div ^2V_7$         | $^1V_8$                      | $\begin{cases} ^2V_6 = ^2V_6 \\ ^2V_7 = ^2V_7 \end{cases}$             | $= \frac{2n-1}{3}$                                                             | ...               | ...               | ...                | ...               | 2n-1              | 3                 | 2n-1              | 3                 |                   |                      |                                                                                 |                                                                                  |                      |                                              |                      |                      |
| 16                                                                | $\times$             | $^1V_8 \times ^3V_{11}$    | $^4V_{11}$                   | $\begin{cases} ^1V_8 = ^0V_8 \\ ^3V_{11} = ^4V_{11} \end{cases}$       | $= \frac{2n}{2} \cdot \frac{2n-1}{3}$                                          | ...               | ...               | ...                | ...               | ...               | 0                 | ...               | ...               |                   |                      | $\frac{2n}{2} \cdot \frac{2n-1}{3}$                                             |                                                                                  |                      |                                              |                      |                      |
| 17                                                                | $-$                  | $^2V_6 - ^1V_1$            | $^3V_6$                      | $\begin{cases} ^2V_6 = ^3V_6 \\ ^1V_1 = ^1V_1 \end{cases}$             | $= 2n-2$                                                                       | 1                 | ...               | ...                | ...               | 2n-2              |                   |                   |                   |                   |                      |                                                                                 |                                                                                  |                      |                                              |                      |                      |
| 18                                                                | $+$                  | $^1V_1 + ^2V_7$            | $^3V_7$                      | $\begin{cases} ^1V_1 = ^1V_1 \\ ^2V_7 = ^3V_7 \end{cases}$             | $= 3+1=4$                                                                      | 1                 | ...               | ...                | ...               | ...               | 4                 |                   |                   |                   |                      |                                                                                 |                                                                                  |                      |                                              |                      |                      |
| 19                                                                | $\div$               | $^3V_6 + ^3V_7$            | $^1V_9$                      | $\begin{cases} ^3V_6 = ^3V_6 \\ ^3V_7 = ^3V_7 \end{cases}$             | $= \frac{2n-2}{4}$                                                             | ...               | ...               | ...                | ...               | 2n-2              | 4                 | 2n-2              | 4                 | ...               |                      | $\left\{ \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{3} \right\} = A_2$ |                                                                                  |                      |                                              |                      |                      |
| 20                                                                | $\times$             | $^1V_9 \times ^4V_{11}$    | $^5V_{11}$                   | $\begin{cases} ^1V_9 = ^0V_9 \\ ^4V_{11} = ^5V_{11} \end{cases}$       | $= \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{4} = A_3$               | ...               | ...               | ...                | ...               | ...               | 0                 |                   |                   |                   |                      |                                                                                 |                                                                                  |                      |                                              |                      |                      |
| 21                                                                | $\times$             | $^1V_{22} \times ^5V_{11}$ | $^0V_{12}$                   | $\begin{cases} ^1V_{22} = ^1V_{22} \\ ^0V_{12} = ^2V_{12} \end{cases}$ | $= B_3 \cdot \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{3} = B_3 A_3$ | ...               | ...               | ...                | ...               | ...               | ...               | ...               | ...               | ...               | 0                    | $B_3 A_3$                                                                       |                                                                                  |                      | $B_3$                                        |                      |                      |
| 22                                                                | $+$                  | $^2V_{12} + ^2V_{13}$      | $^3V_{13}$                   | $\begin{cases} ^2V_{12} = ^0V_{12} \\ ^2V_{13} = ^3V_{13} \end{cases}$ | $= A_0 + B_1 A_1 + B_3 A_3$                                                    | ...               | ...               | ...                | ...               | ...               | ...               | ...               | ...               | ...               |                      | 0                                                                               | $\left\{ A_3 + B_1 A_1 + B_3 A_3 \right\}$                                       |                      |                                              |                      |                      |
| 23                                                                | $-$                  | $^2V_{10} - ^1V_1$         | $^3V_{10}$                   | $\begin{cases} ^2V_{10} = ^3V_{10} \\ ^1V_1 = ^1V_1 \end{cases}$       | $= n-3 (= 1)$                                                                  | 1                 | ...               | ...                | ...               | ...               | ...               | ...               | ...               | ...               | n-3                  |                                                                                 |                                                                                  |                      |                                              |                      |                      |
| Here follows a repetition of Operations thirteen to twenty-three. |                      |                            |                              |                                                                        |                                                                                |                   |                   |                    |                   |                   |                   |                   |                   |                   |                      |                                                                                 |                                                                                  |                      |                                              |                      |                      |
| 24                                                                | $+$                  | $^4V_{13} + ^0V_{24}$      | $^1V_{24}$                   | $\begin{cases} ^4V_{13} = ^0V_{13} \\ ^0V_{24} = ^1V_{24} \end{cases}$ | $= B_7$                                                                        | ...               | ...               | ...                | ...               | ...               | ...               | ...               | ...               | ...               | ...                  | ...                                                                             | ...                                                                              | ...                  | ...                                          | $B_7$                |                      |
| 25                                                                | $+$                  | $^1V_1 + ^1V_3$            | $^1V_3$                      | $\begin{cases} ^1V_1 = ^1V_1 \\ ^1V_3 = ^1V_3 \end{cases}$             | $= n+1=4+1=5$                                                                  | 1                 | ...               | n+1                | ...               | 0                 | 0                 |                   |                   |                   |                      |                                                                                 |                                                                                  |                      |                                              |                      |                      |

by a Variable-card.

# The Aftermath: Computers

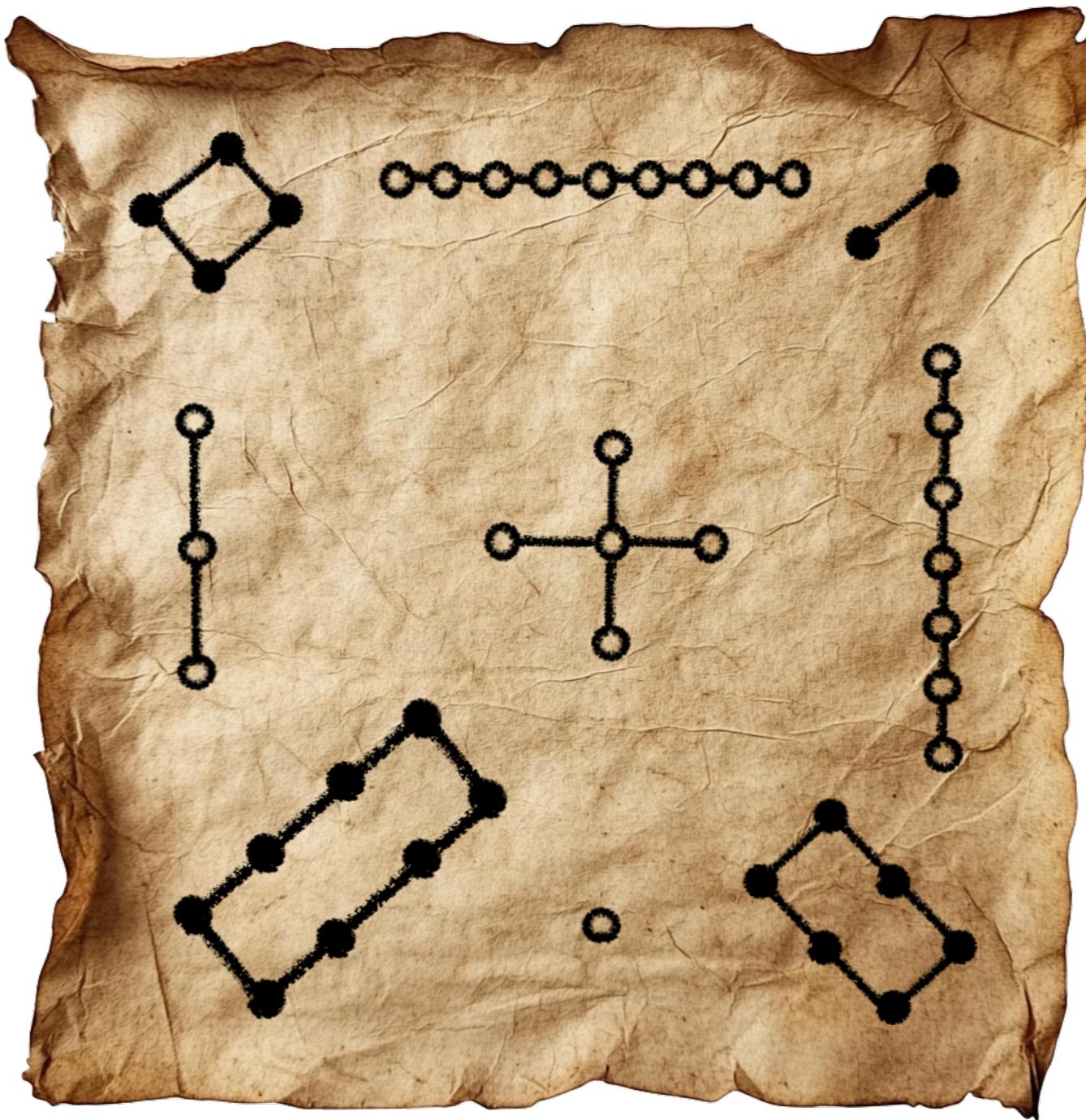
# The Aftermath: Computers




- The theoretical study of computers would be advanced in the 20th century by Alan Turing.

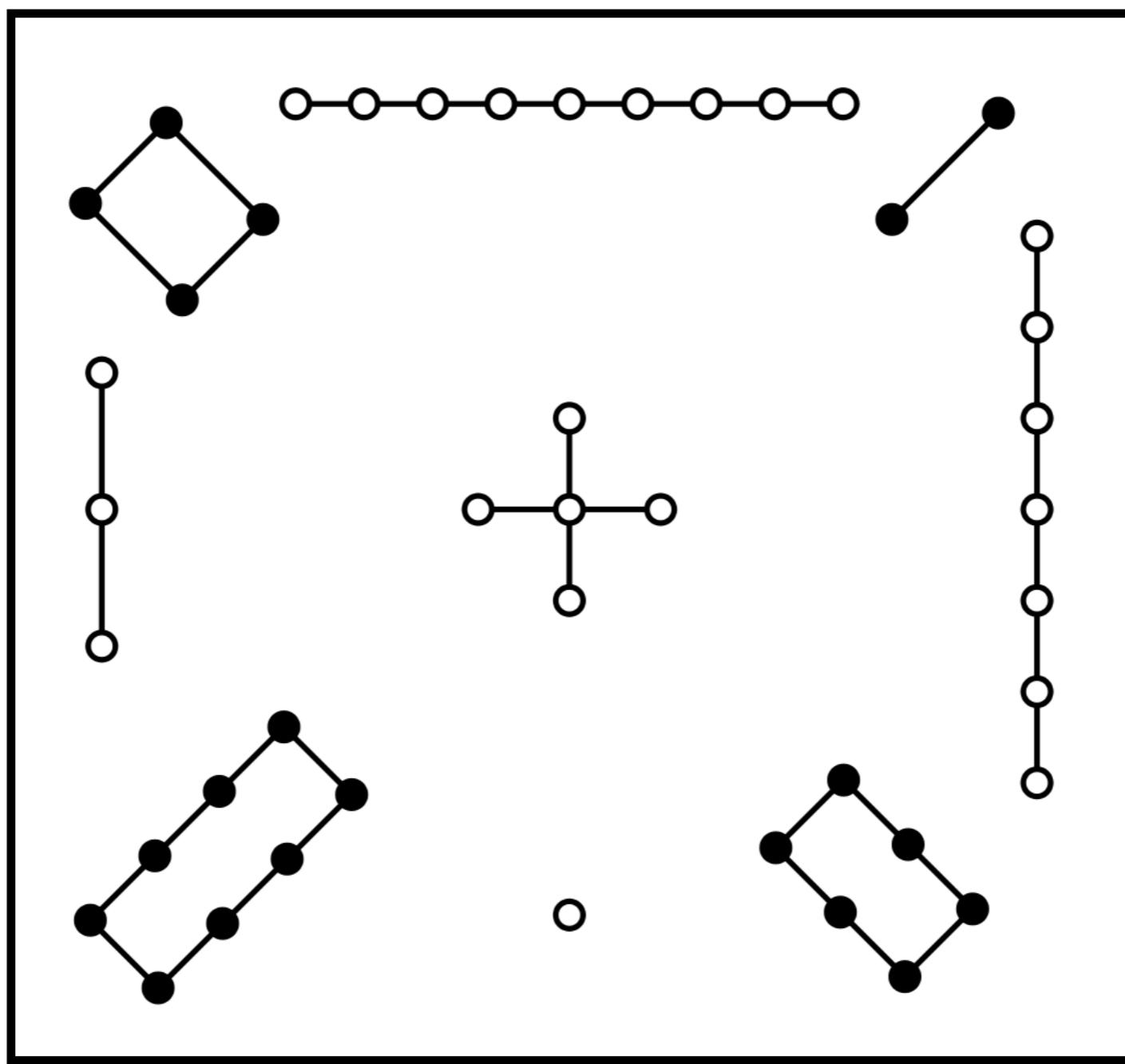
# The Aftermath: Computers




- The theoretical study of computers would be advanced in the 20th century by Alan Turing.
- To study a computer's limits, in 1936 he invented the “Turing machine.”

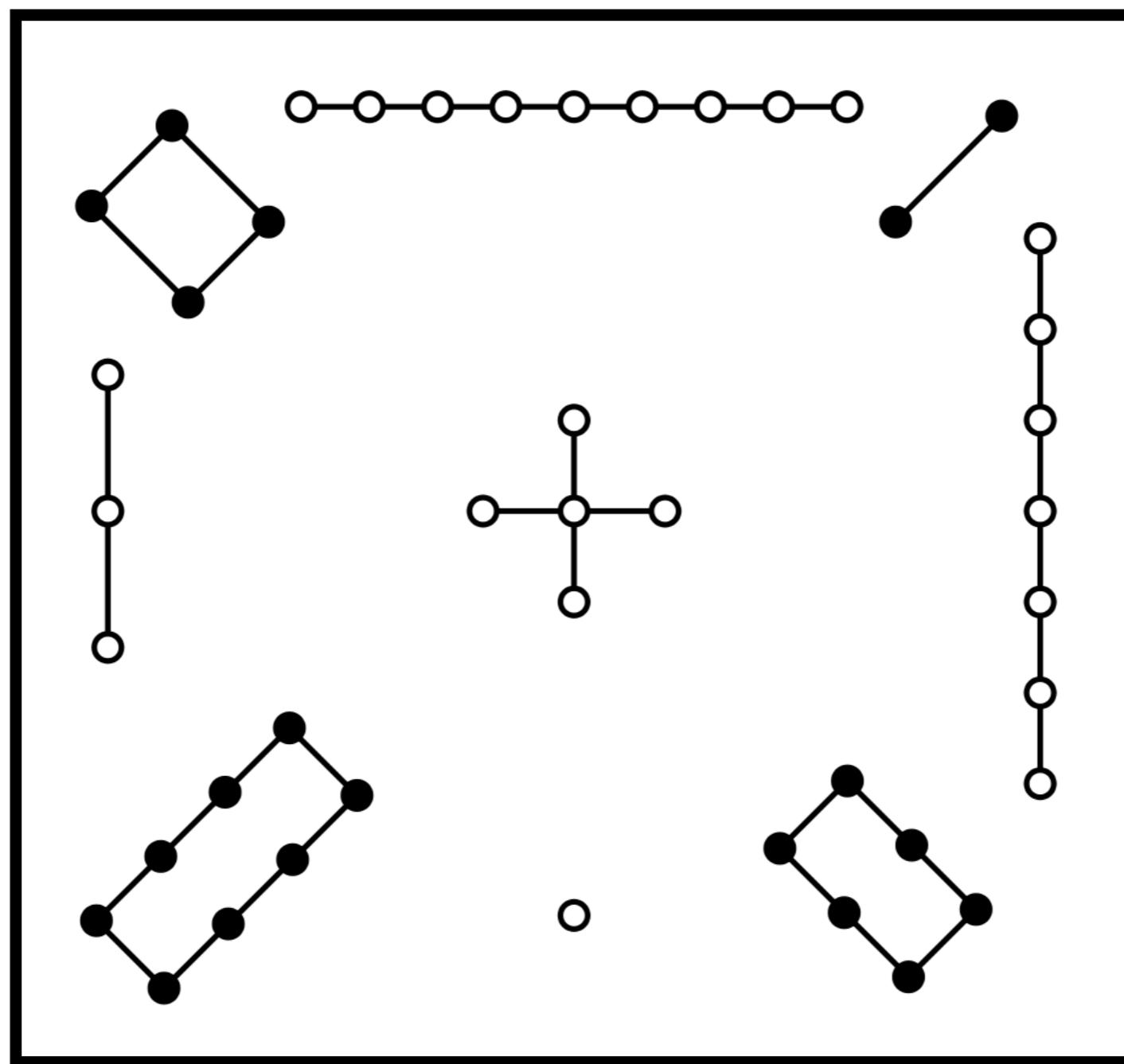


Think Like A  
Math Historian


# Think Like a Math Historian

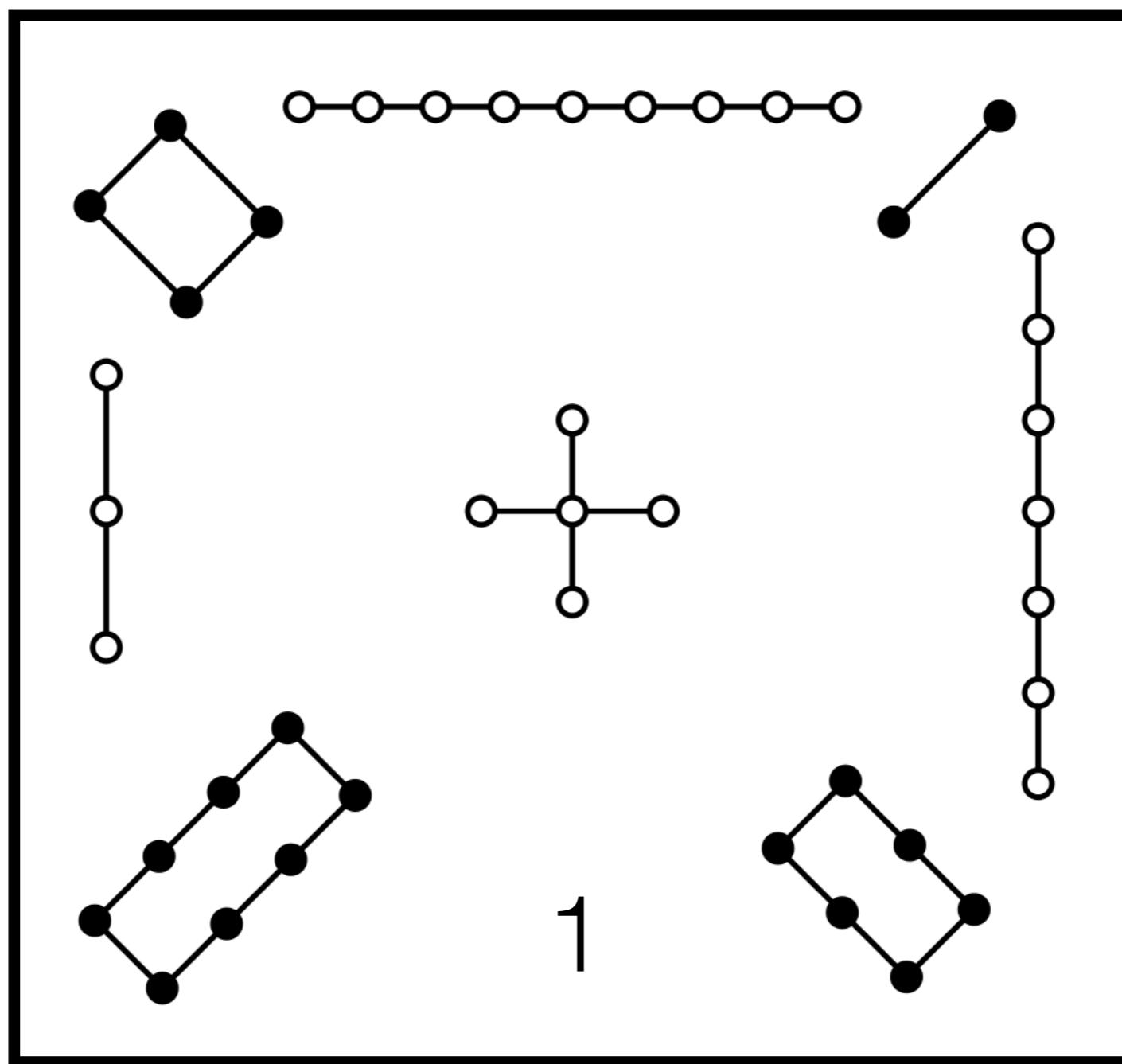
- What does this mean?




# Think Like a Math Historian

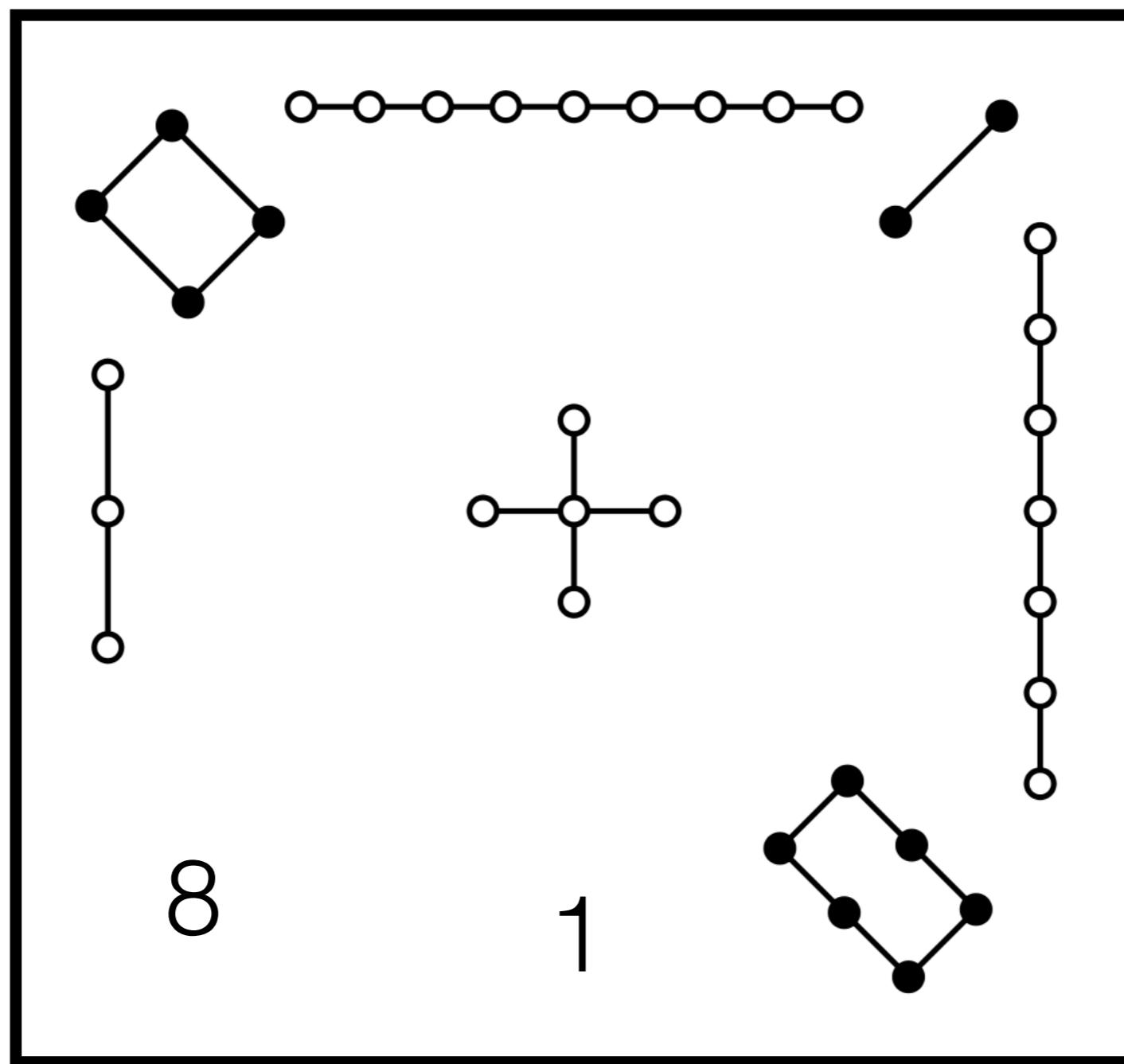
- Hint: Focus on how many dots are in each group.




# Think Like a Math Historian

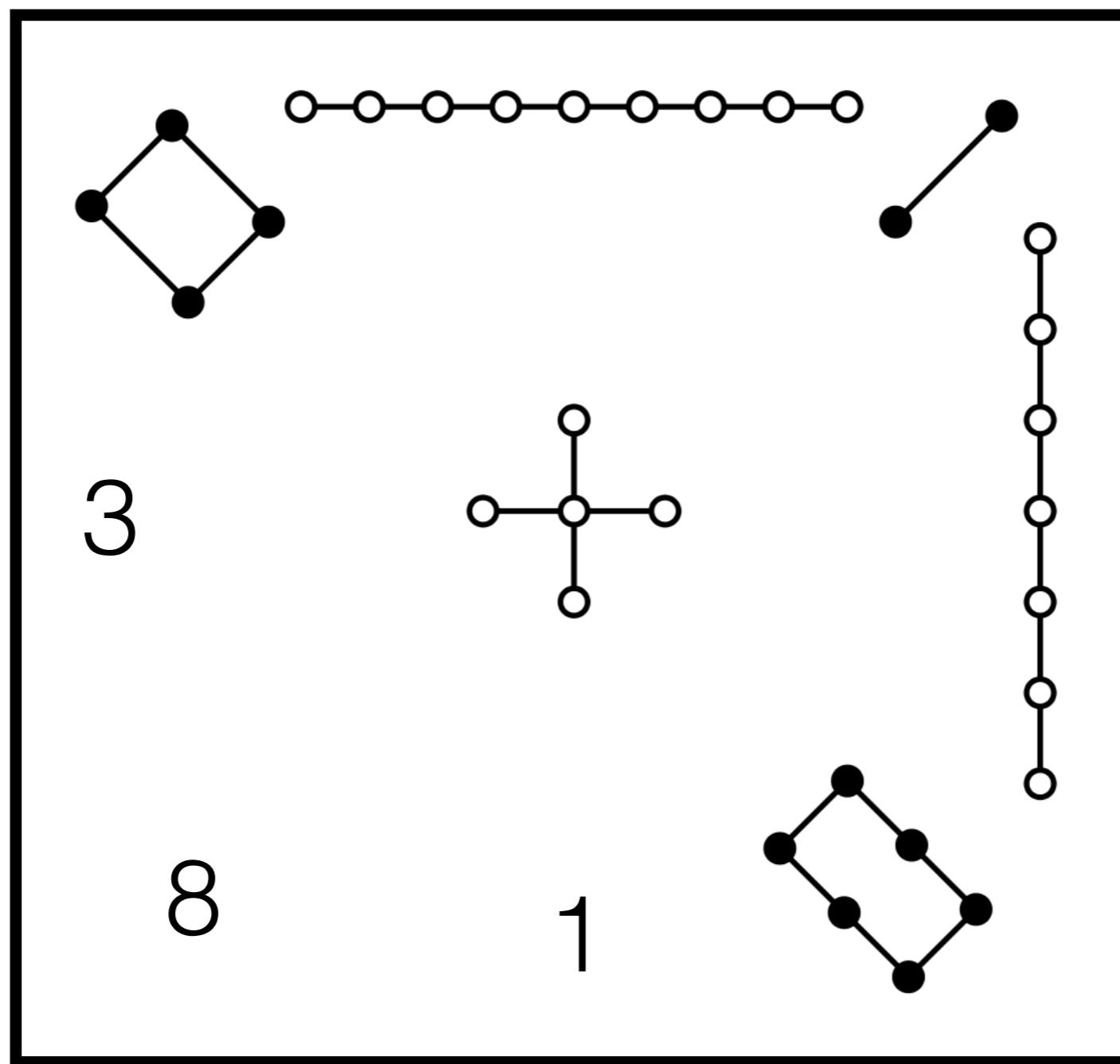
- Hint: Focus on how many dots are in each group.




# Think Like a Math Historian

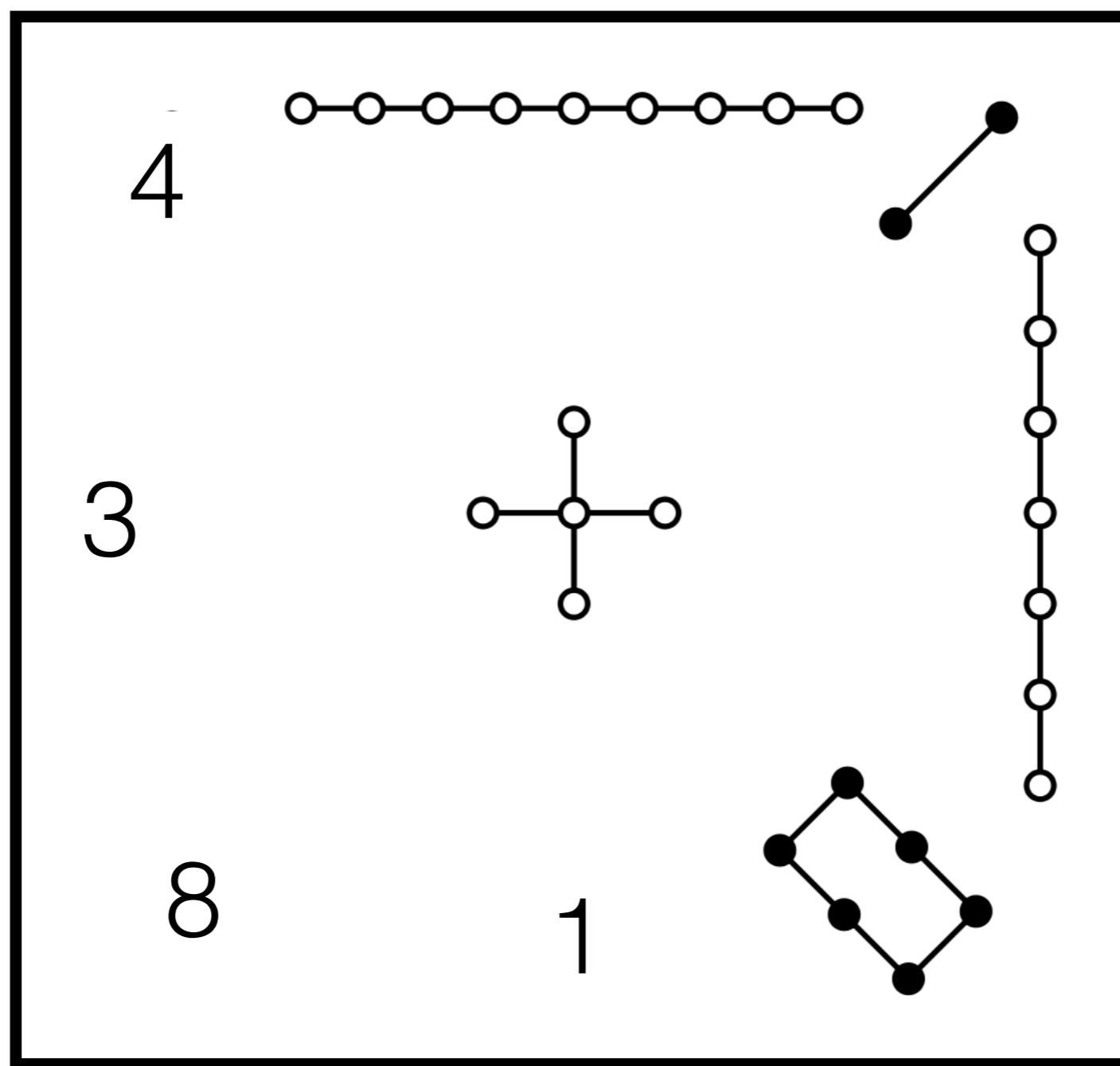
- Hint: Focus on how many dots are in each group.




# Think Like a Math Historian

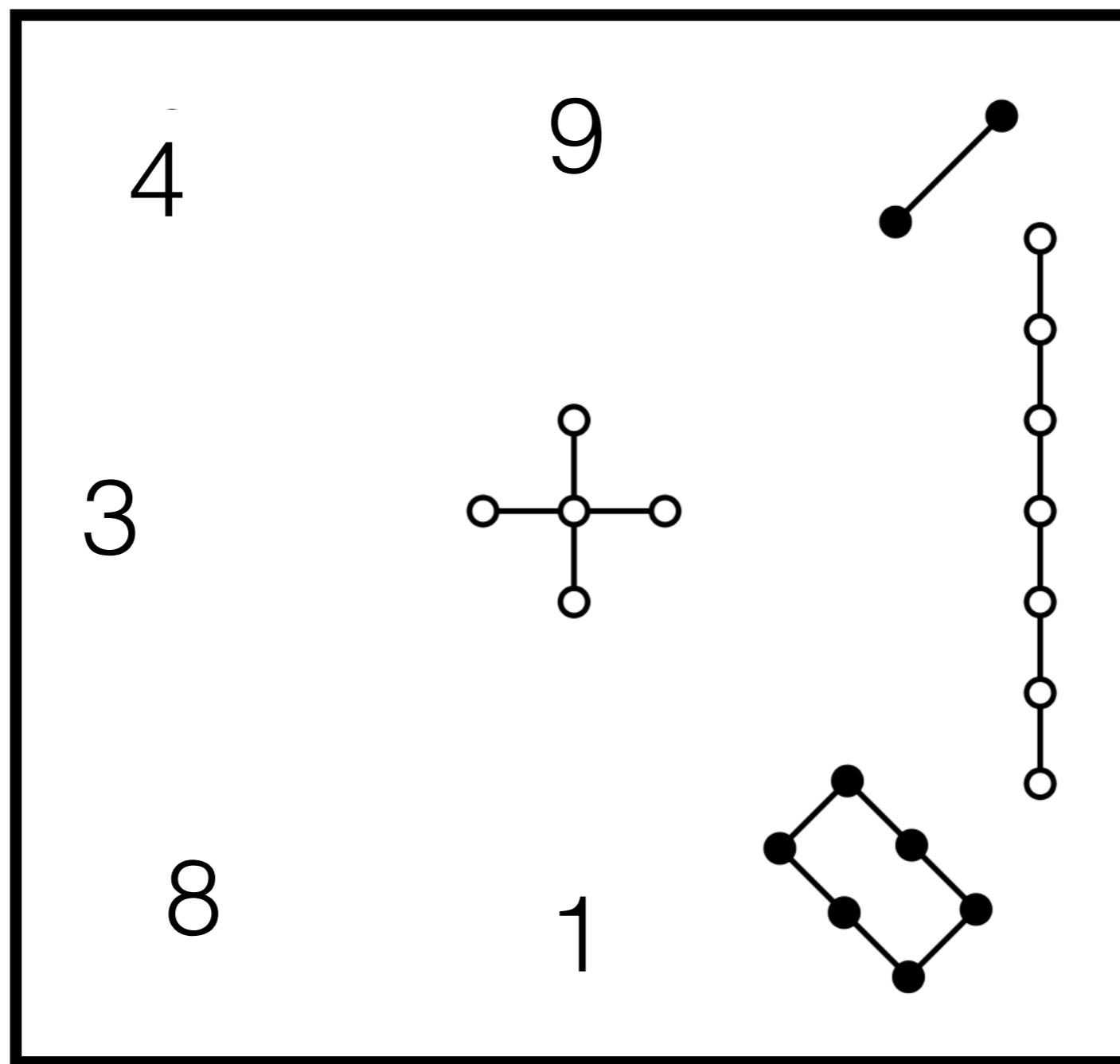
- Hint: Focus on how many dots are in each group.




# Think Like a Math Historian

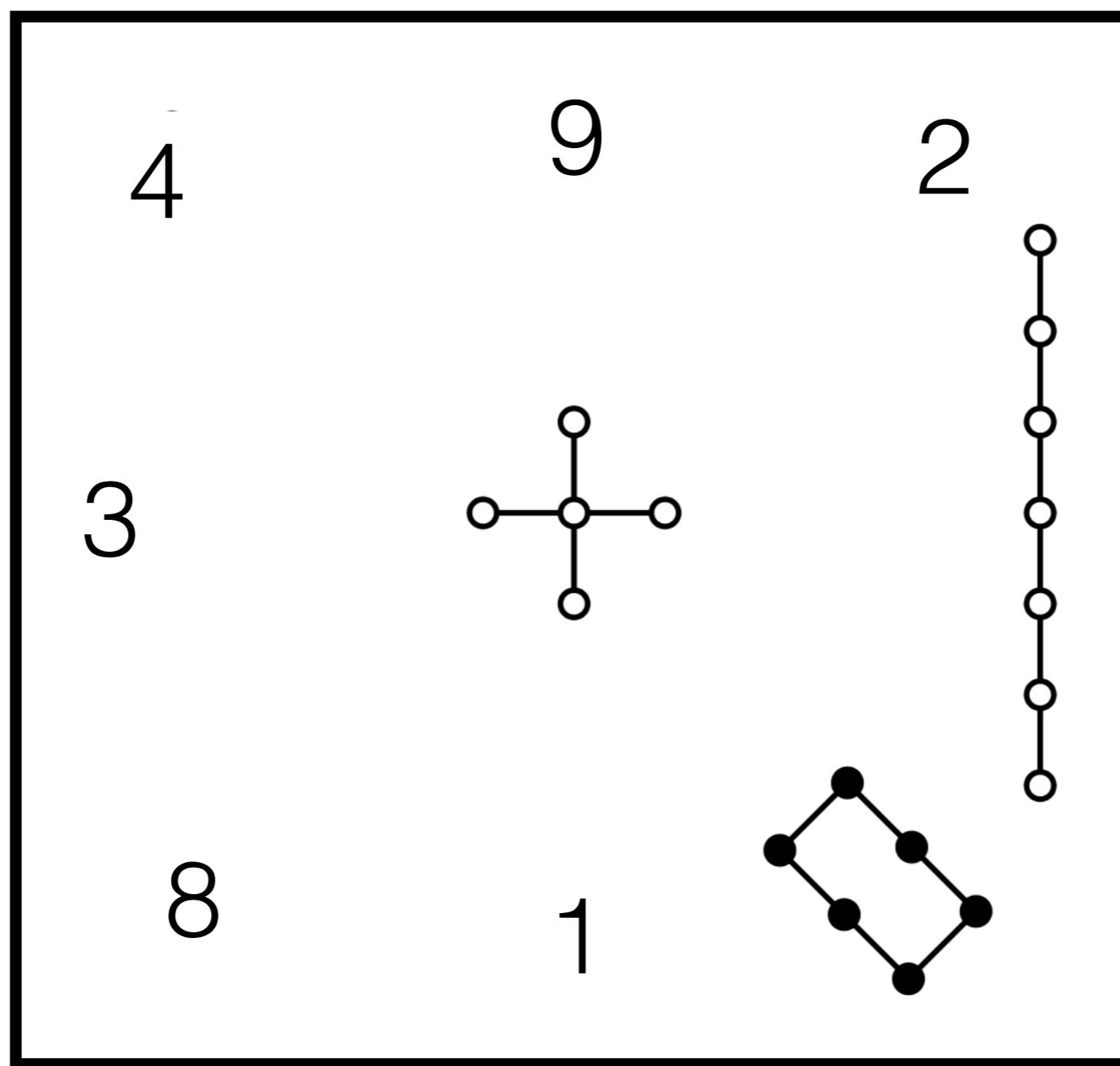
- Hint: Focus on how many dots are in each group.




# Think Like a Math Historian

- Hint: Focus on how many dots are in each group.




# Think Like a Math Historian

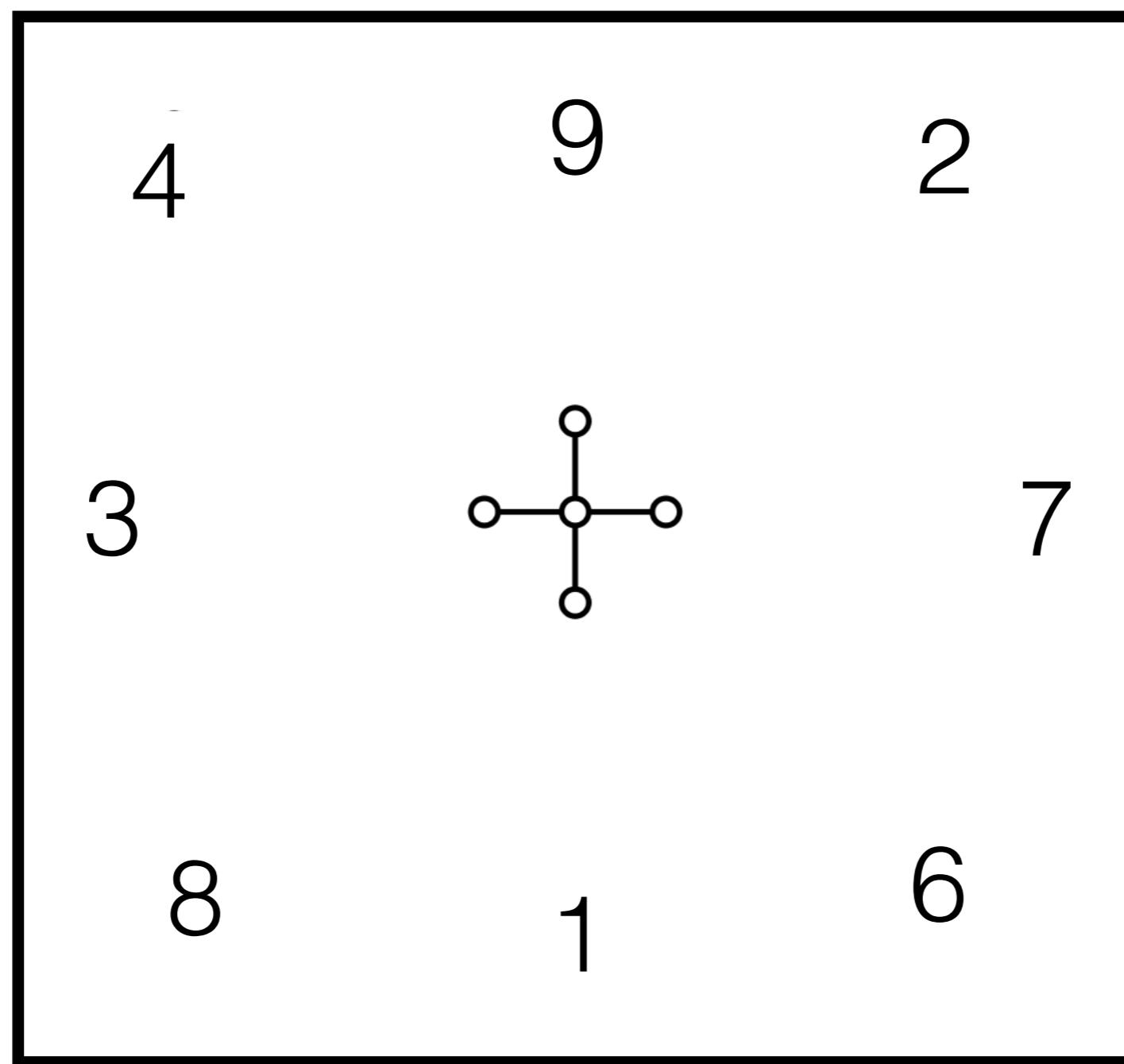
- Hint: Focus on how many dots are in each group.



# Think Like a Math Historian

- Hint: Focus on how many dots are in each group.




# Think Like a Math Historian

- Hint: Focus on how many dots are in each group.




# Think Like a Math Historian

- Hint: Focus on how many dots are in each group.



# Think Like a Math Historian

- Hint: Focus on how many dots are in each group.



# Think Like a Math Historian

- Magic Square

|   |   |   |
|---|---|---|
| 4 | 9 | 2 |
| 3 | 5 | 7 |
| 8 | 1 | 6 |

# Think Like a Math Historian

- Magic Square

|   |   |   |
|---|---|---|
| 4 | 9 | 2 |
| 3 | 5 | 7 |
| 8 | 1 | 6 |

# Think Like a Math Historian

- Magic Square

|   |   |   |
|---|---|---|
| 4 | 9 | 2 |
| 3 | 5 | 7 |
| 8 | 1 | 6 |

# Think Like a Math Historian

- Magic Square

|   |   |   |
|---|---|---|
| 4 | 9 | 2 |
| 3 | 5 | 7 |
| 8 | 1 | 6 |

# Think Like a Math Historian

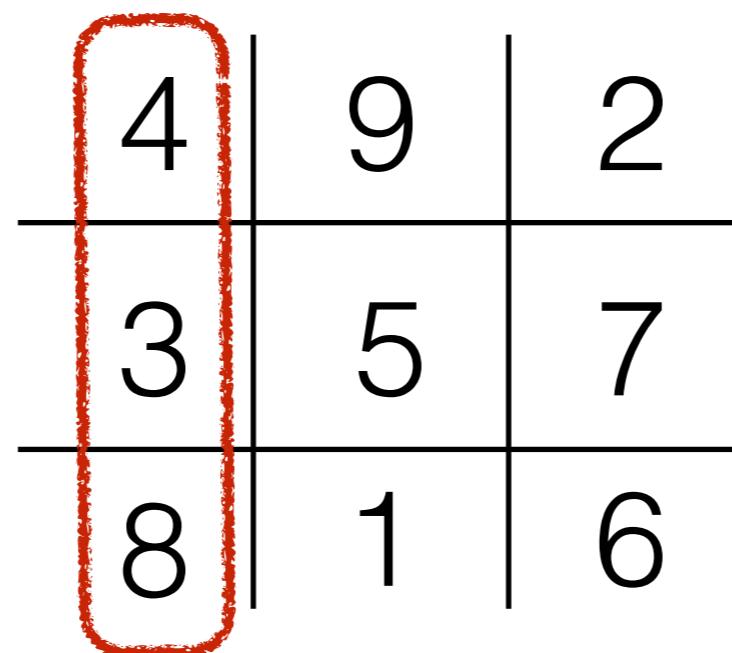
- Magic Square

|   |   |   |
|---|---|---|
| 4 | 9 | 2 |
| 3 | 5 | 7 |
| 8 | 1 | 6 |

# Think Like a Math Historian

- Magic Square

|   |   |   |
|---|---|---|
| 4 | 9 | 2 |
| 3 | 5 | 7 |
| 8 | 1 | 6 |


# Think Like a Math Historian

- Magic Square

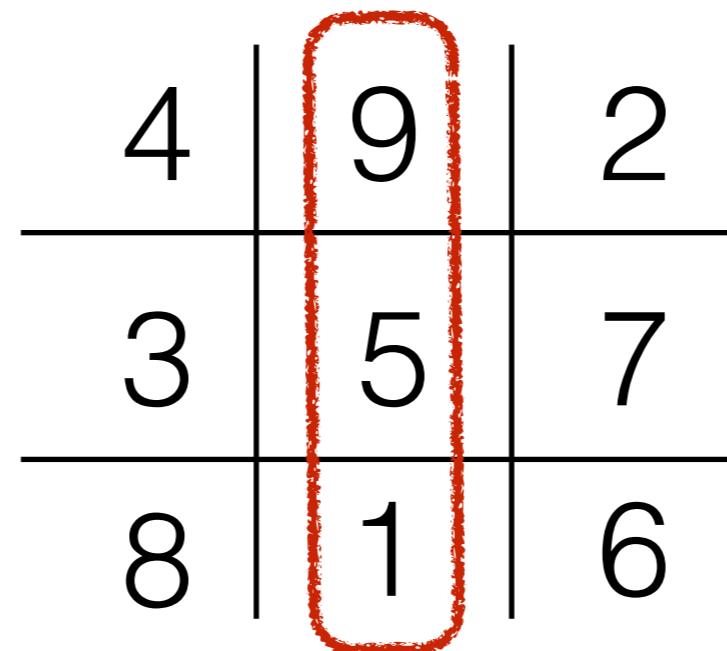
|   |   |   |
|---|---|---|
| 4 | 9 | 2 |
| 3 | 5 | 7 |
| 8 | 1 | 6 |

# Think Like a Math Historian

- Magic Square



|   |   |   |
|---|---|---|
| 4 | 9 | 2 |
| 3 | 5 | 7 |
| 8 | 1 | 6 |


# Think Like a Math Historian

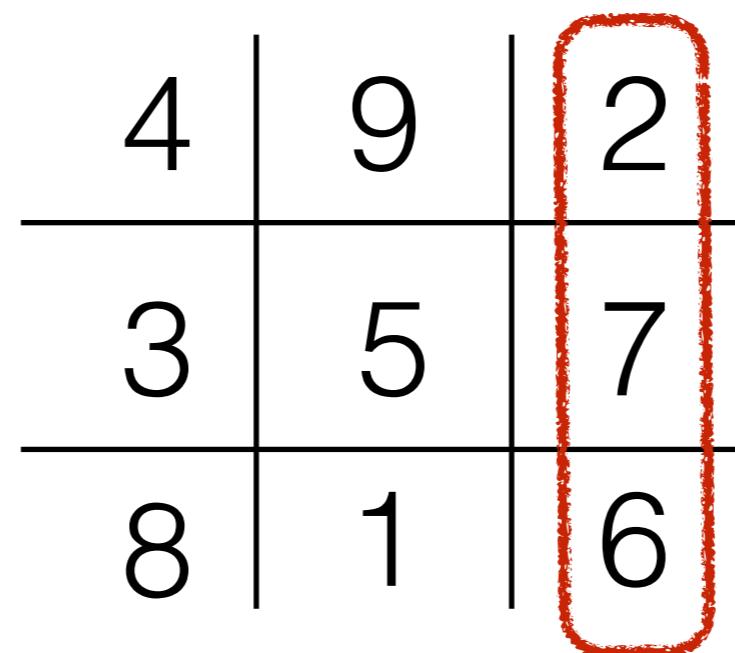
- Magic Square

|   |   |   |
|---|---|---|
| 4 | 9 | 2 |
| 3 | 5 | 7 |
| 8 | 1 | 6 |

# Think Like a Math Historian

- Magic Square




# Think Like a Math Historian

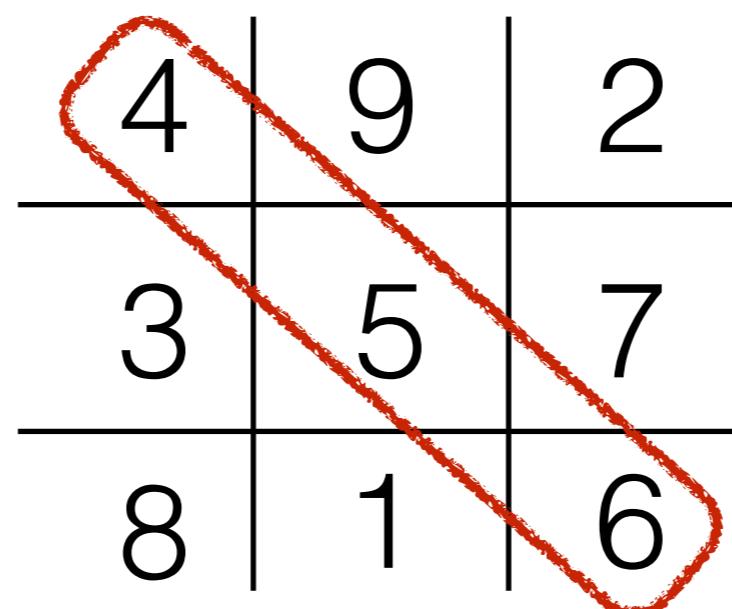
- Magic Square

|   |   |   |
|---|---|---|
| 4 | 9 | 2 |
| 3 | 5 | 7 |
| 8 | 1 | 6 |

# Think Like a Math Historian

- Magic Square




# Think Like a Math Historian

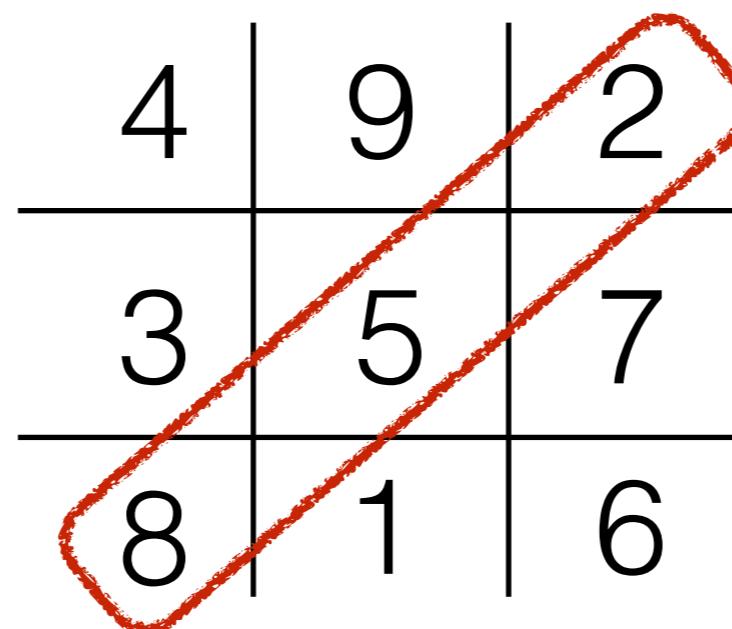
- Magic Square

|   |   |   |
|---|---|---|
| 4 | 9 | 2 |
| 3 | 5 | 7 |
| 8 | 1 | 6 |

# Think Like a Math Historian

- Magic Square




# Think Like a Math Historian

- Magic Square

|   |   |   |
|---|---|---|
| 4 | 9 | 2 |
| 3 | 5 | 7 |
| 8 | 1 | 6 |

# Think Like a Math Historian

- Magic Square



# Think Like a Math Historian

- Magic Square

|   |   |   |
|---|---|---|
| 4 | 9 | 2 |
| 3 | 5 | 7 |
| 8 | 1 | 6 |

# The Aftermath

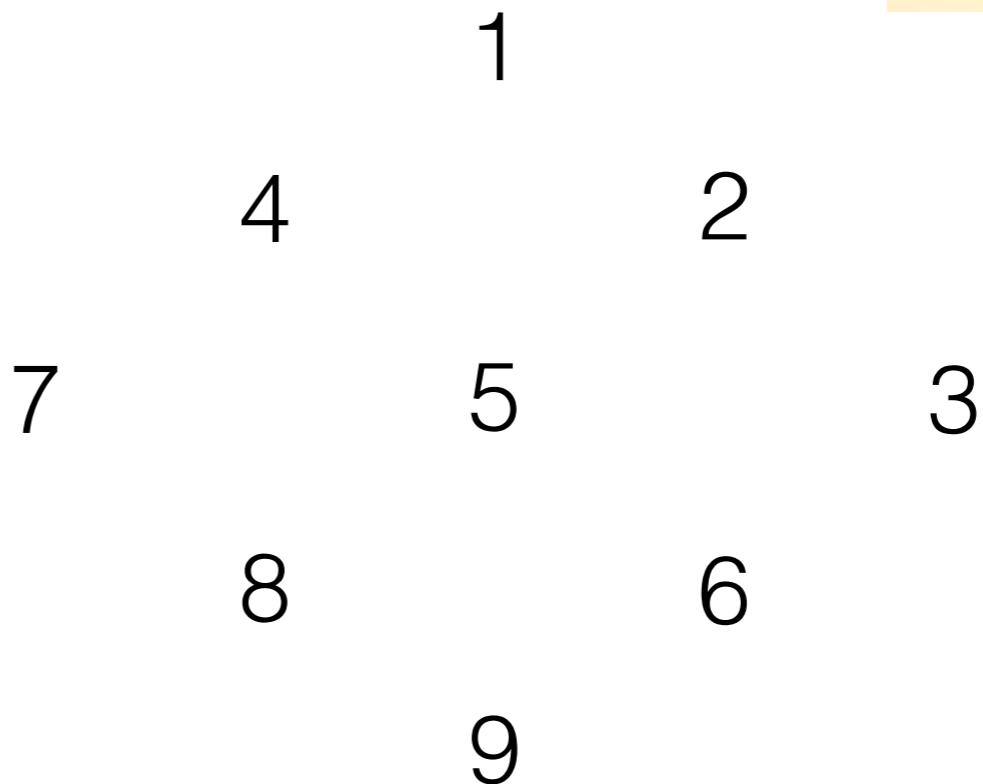
# The Aftermath

- Yang Hui, a much more modern Chinese mathematician (~1238-1298 AD) had a 3-step procedure to create this square.



# The Aftermath

- Yang Hui, a much more modern Chinese mathematician (~1238-1298 AD) had a 3-step procedure to create this square.


Step 1: Write numbers  
in a diamond.



# The Aftermath

- Yang Hui, a much more modern Chinese mathematician (~1238-1298 AD) had a 3-step procedure to create this square.

Step 1: Write numbers  
in a diamond.



# The Aftermath

- Yang Hui, a much more modern Chinese mathematician (~1238-1298 AD) had a 3-step procedure to create this square.

Step 2: Swap corners.

|   |   |   |
|---|---|---|
|   |   | 1 |
|   | 4 | 2 |
| 7 |   | 5 |
|   | 8 | 6 |
|   |   | 9 |

# The Aftermath

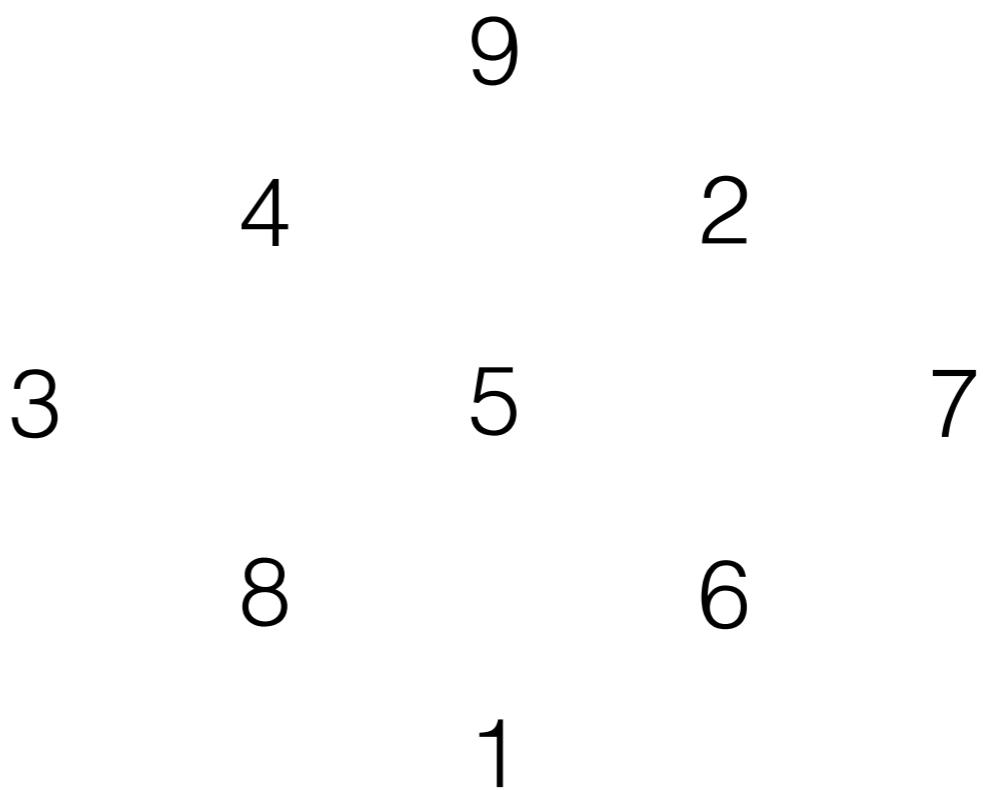
- Yang Hui, a much more modern Chinese mathematician (~1238-1298 AD) had a 3-step procedure to create this square.

Step 2: Swap corners.

|   |   |   |   |
|---|---|---|---|
|   |   | 9 |   |
|   | 4 |   | 2 |
| 7 |   | 5 | 3 |
|   | 8 |   | 6 |
|   |   | 1 |   |

# The Aftermath

- Yang Hui, a much more modern Chinese mathematician (~1238-1298 AD) had a 3-step procedure to create this square.


Step 2: Swap corners.

|   |   |   |   |
|---|---|---|---|
|   |   | 9 |   |
|   | 4 |   | 2 |
| 3 |   | 5 | 7 |
|   | 8 |   | 6 |
|   |   | 1 |   |

# The Aftermath

- Yang Hui, a much more modern Chinese mathematician (~1238-1298 AD) had a 3-step procedure to create this square.

Step 3: Scrunch together.



# The Aftermath

- Yang Hui, a much more modern Chinese mathematician (~1238-1298 AD) had a 3-step procedure to create this square.

Step 3: Scrunch together.

|   |   |   |
|---|---|---|
| 4 | 9 | 2 |
| 3 | 5 | 7 |
| 8 | 1 | 6 |

# The Aftermath

- Yang Hui, a much more modern Chinese mathematician (~1238-1298 AD) had a 3-step procedure to create this square.

Step 3: Scrunch together.

|   |   |   |
|---|---|---|
| 4 | 9 | 2 |
| 3 | 5 | 7 |
| 8 | 1 | 6 |

# The Aftermath

- Yang Hui, a much more modern Chinese mathematician (~1238-1298 AD) had a 3-step procedure to create this square.

Step 3: Scrunch together.

|   |   |   |
|---|---|---|
| 4 | 9 | 2 |
| 3 | 5 | 7 |
| 8 | 1 | 6 |

Hui also came up with a similar algorithm to construct a 4x4 magic square.

# The Aftermath

- Yang Hui constructed a magic square of every size up to 10x10.

# The Aftermath

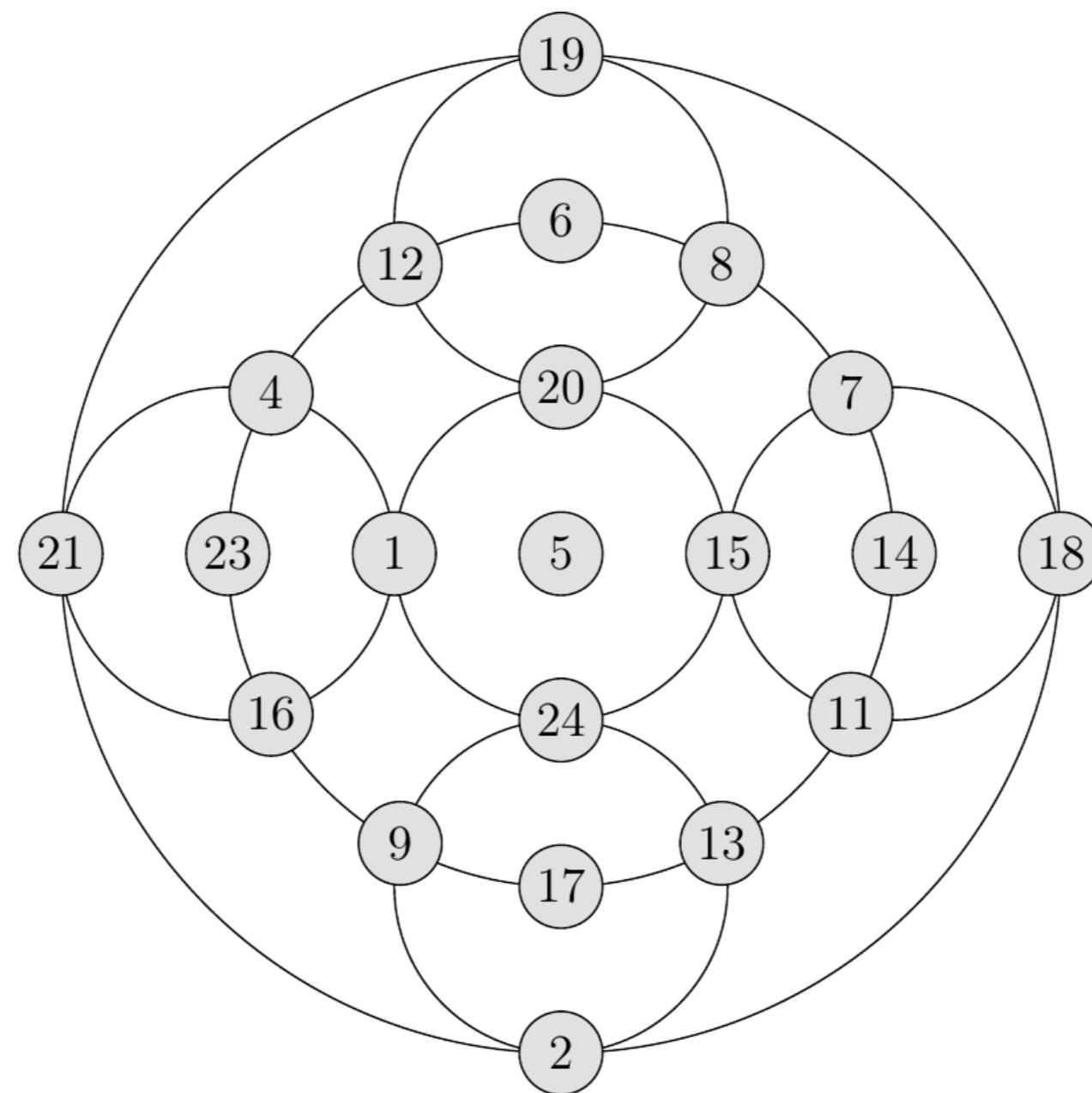
- Yang Hui constructed a magic square of every size up to 10x10.

|    |   |   |   |   |   |   |   |   |    |
|----|---|---|---|---|---|---|---|---|----|
| 一  | 二 | 二 | 四 | 四 | 六 | 六 | 八 | 八 | 一  |
| 九  | 八 | 七 | 六 | 五 | 四 | 三 | 二 | 一 | 百  |
| 九  | 九 | 九 | 二 | 九 | 二 | 九 | 二 | 九 | 二  |
| 三  | 十 | 二 | 三 | 三 | 五 | 六 | 七 | 八 | 九  |
| 九  | 八 | 七 | 六 | 五 | 四 | 三 | 二 | 一 | 八  |
| 七  | 四 | 七 | 四 | 七 | 四 | 七 | 四 | 七 | 八  |
| 五  | 十 | 二 | 三 | 四 | 五 | 六 | 七 | 八 | 九  |
| 六  | 六 | 五 | 六 | 五 | 六 | 五 | 六 | 五 | 六  |
| 九  | 八 | 七 | 六 | 五 | 四 | 三 | 二 | 一 | 五  |
| 五  | 六 | 五 | 六 | 五 | 六 | 五 | 六 | 五 | 六  |
| 十四 | 七 | 三 | 二 | 五 | 四 | 七 | 四 | 六 | 九  |
| 八  | 九 | 六 | 七 | 四 | 五 | 三 | 二 | 三 | 八  |
| 八  | 三 | 八 | 三 | 八 | 三 | 八 | 三 | 三 | 七  |
| 十二 | 九 | 三 | 二 | 五 | 二 | 九 | 二 | 六 | 九  |
| 九  | 九 | 七 | 七 | 五 | 五 | 三 | 三 | 九 | 二  |
| 一  | 十 | 一 | 七 | 一 | 十 | 一 | 三 | 十 | 十一 |

# The Aftermath

- Yang Hui constructed a magic square of every size up to 10x10.

|    |   |   |   |   |   |   |   |   |   |   |
|----|---|---|---|---|---|---|---|---|---|---|
| 一  | 二 | 二 | 四 | 四 | 六 | 六 | 八 | 八 | 一 | 百 |
| 九  | 八 | 七 | 六 | 五 | 四 | 三 | 二 | 一 | 九 | 二 |
| 九  | 九 | 九 | 二 | 九 | 二 | 九 | 二 | 九 | 八 | 一 |
| 三  | 十 | 二 | 三 | 八 | 四 | 五 | 六 | 三 | 七 | 八 |
| 九  | 八 | 七 | 六 | 五 | 四 | 三 | 七 | 二 | 四 | 十 |
| 七  | 四 | 七 | 四 | 七 | 四 | 七 | 二 | 四 | 七 | 九 |
| 五  | 十 | 二 | 三 | 四 | 五 | 六 | 五 | 六 | 七 | 八 |
| 六  | 六 | 五 | 六 | 五 | 六 | 五 | 六 | 五 | 六 | 九 |
| 九  | 八 | 七 | 六 | 五 | 四 | 三 | 五 | 二 | 六 | 五 |
| 五  | 六 | 五 | 六 | 五 | 六 | 五 | 六 | 二 | 五 | 四 |
| 十  | 四 | 七 | 三 | 二 | 五 | 四 | 七 | 六 | 九 | 八 |
| 八  | 八 | 九 | 六 | 七 | 四 | 五 | 三 | 二 | 八 | 七 |
| 八  | 三 | 三 | 八 | 三 | 八 | 三 | 三 | 三 | 三 | 十 |
| 十二 | 九 | 三 | 二 | 五 | 二 | 四 | 九 | 二 | 九 | 八 |
| 九  | 一 | 九 | 七 | 七 | 五 | 五 | 三 | 三 | 三 | 九 |
| 十  | 十 | 一 | 七 | 十 | 一 | 五 | 十 | 一 | 三 | 十 |

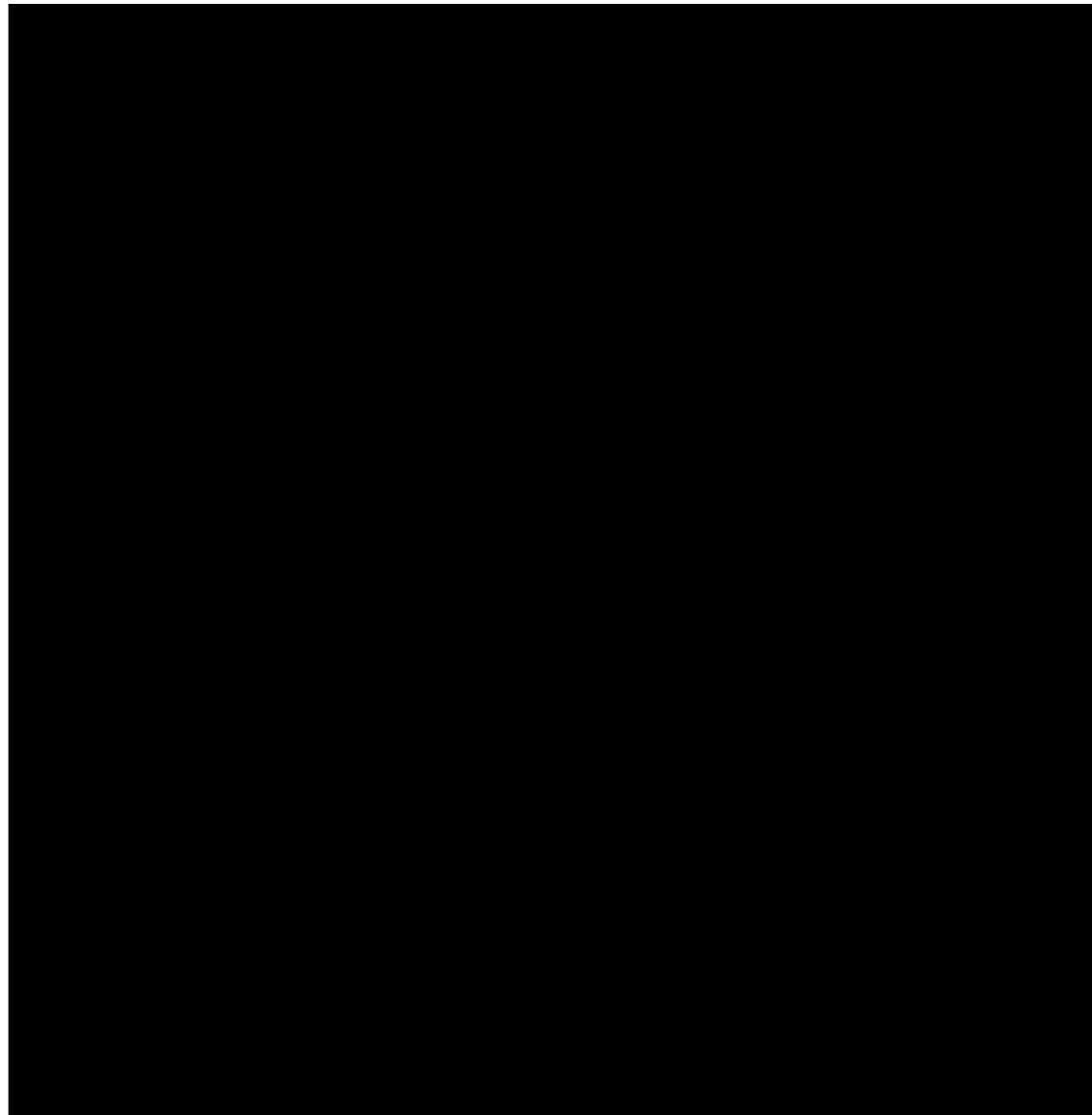

|    |    |    |    |    |    |    |    |    |     |
|----|----|----|----|----|----|----|----|----|-----|
| 1  | 20 | 21 | 40 | 41 | 60 | 61 | 80 | 81 | 100 |
| 99 | 82 | 79 | 62 | 59 | 42 | 39 | 22 | 19 | 2   |
| 3  | 18 | 23 | 38 | 43 | 58 | 63 | 78 | 83 | 98  |
| 97 | 84 | 77 | 64 | 57 | 44 | 37 | 24 | 17 | 4   |
| 5  | 16 | 25 | 36 | 45 | 56 | 65 | 76 | 85 | 96  |
| 95 | 86 | 75 | 66 | 55 | 46 | 35 | 26 | 15 | 6   |
| 14 | 7  | 34 | 27 | 54 | 47 | 74 | 67 | 94 | 87  |
| 88 | 93 | 68 | 73 | 48 | 53 | 28 | 33 | 8  | 13  |
| 12 | 9  | 32 | 29 | 52 | 49 | 72 | 69 | 92 | 89  |
| 91 | 90 | 71 | 70 | 51 | 50 | 31 | 30 | 11 | 10  |

# The Aftermath

- Yang Hui also constructed six magic circles.

# The Aftermath

- Yang Hui also constructed six magic circles.




# Algorithm to Construct Odd Magic Squares



# Algorithm to Construct Odd Magic Squares

- Place a 1 in the top middle.



# Algorithm to Construct Odd Magic Squares

- Place a 1 in the top middle.
- Each time, move up and right, wrapping around when needed, writing the next number.



# Algorithm to Construct Odd Magic Squares

- Place a 1 in the top middle.
- Each time, move up and right, wrapping around when needed, writing the next number.
- If a cell is full, instead move down.



# Algorithm to Construct Odd Magic Squares

- Place a 1 in the top middle.
- Each time, move up and right, wrapping around when needed, writing the next number.
- If a cell is full, instead move down.



# Algorithm to Construct Magic Squares

# Algorithm to Construct Magic Squares

# Chapter 1

# Shout-Outs

# Counting Crows

# Counting Crows


- Other animals may count too, to some extent. For example, crows.

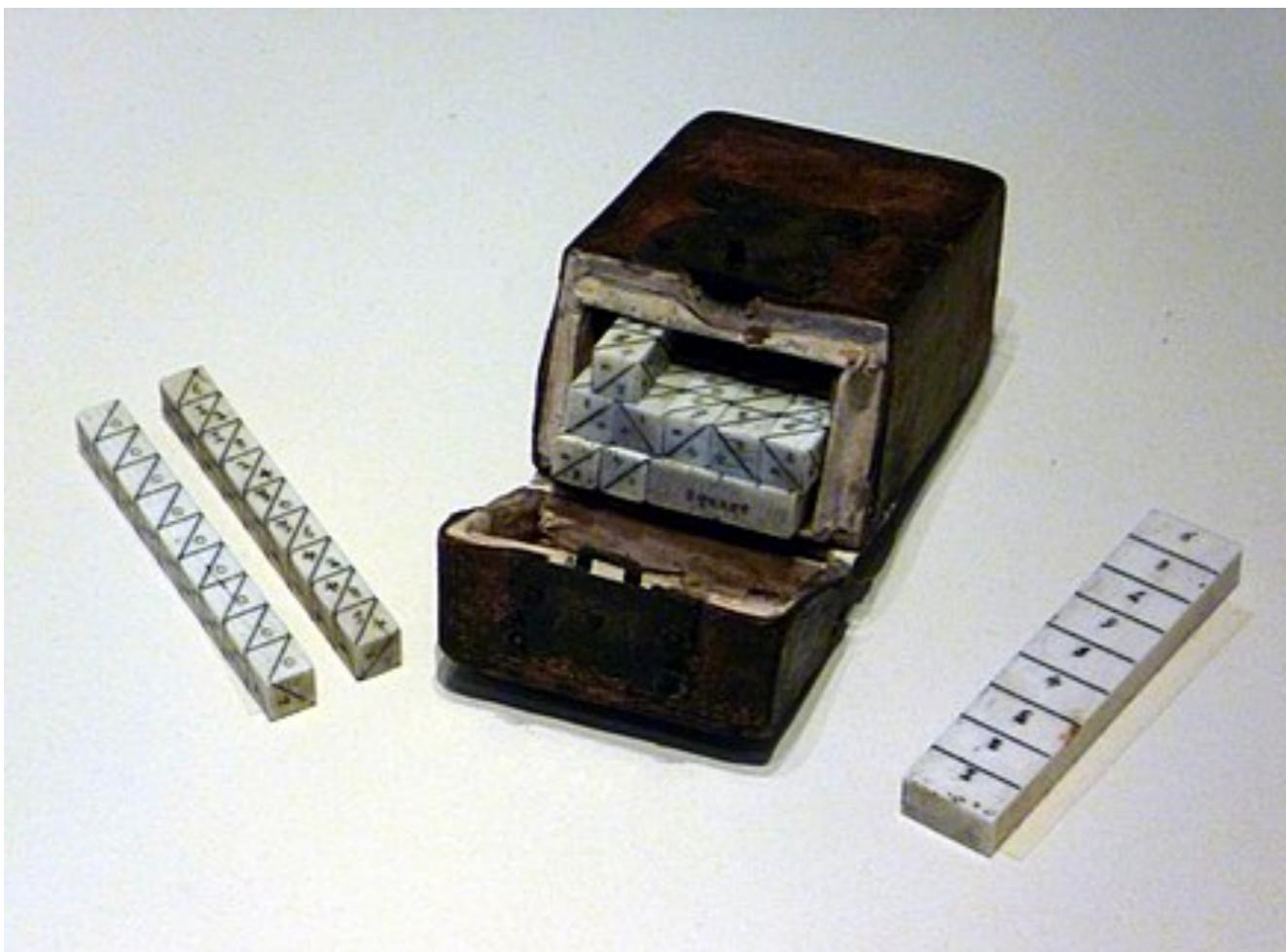
# Counting Crows

- Other animals may count too, to some extent. For example, crows.
- Old story of a hunter hiding in a shelter.



# Video: Counting Crows






# Napier's Bones Shout-Out

- Napier's Bones

# Napier's Bones Shout-Out

- Napier's Bones



| Napier's Bones |   |   |   |   |   |   |   |   |   |   |
|----------------|---|---|---|---|---|---|---|---|---|---|
|                | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 1              | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2              | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 2 |
| 3              | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 |
| 4              | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 3 |
| 5              | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 |
| 6              | 0 | 0 | 0 | 1 | 1 | 2 | 3 | 3 | 4 | 5 |
| 7              | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 4 | 5 |
| 8              | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 4 | 5 | 6 |
| 9              | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

Invented by John Napier 1550-1617      Made in USA by Creative Crafthouse

# From the Appendices

# From the Appendices

- Appendix B: The correct pronunciations of Charles Babbage, Ada Lovelace, John Napier, Blaise Pascal, Alan Turing, Acharya Virasena, Yang Hui.

# From the Appendices

- Appendix B: The correct pronunciations of Charles Babbage, Ada Lovelace, John Napier, Blaise Pascal, Alan Turing, Acharya Virasena, Yang Hui.
- Appendix D: The etymologies of Abacus, Arithmetic, Array, Base, Binary, Calculate, Compute, Decimal, Difference, Digit, Divide, Exponent, Factor, Integer, Logarithm, Mathematics, Multiply, Natural number, Number, Origin, Prime, Problem, Quotient, Solution, Subtract, Sum and Zero.

# From the Appendices

- Appendix B: The correct pronunciations of Charles Babbage, Ada Lovelace, John Napier, Blaise Pascal, Alan Turing, Acharya Virasena, Yang Hui.
- Appendix D: The etymologies of Abacus, Arithmetic, Array, Base, Binary, Calculate, Compute, Decimal, Difference, Digit, Divide, Exponent, Factor, Integer, Logarithm, Mathematics, Multiply, Natural number, Number, Origin, Prime, Problem, Quotient, Solution, Subtract, Sum and Zero.
- Appendix F: The biographies of Ada Lovelace and Alan Turing.

# People's History

# A People's History of Math

# A People's History of Math

- A “people’s history” generally studies the history of non-elites, although this term has been used in many different ways in literature. After each chapter in the book is a “people’s history” section.

# A People's History of Math

- A “people’s history” generally studies the history of non-elites, although this term has been used in many different ways in literature. After each chapter in the book is a “people’s history” section.
  - Five of these are about how non-mathematicians made interesting progress in math.

# A People's History of Math

- A “people’s history” generally studies the history of non-elites, although this term has been used in many different ways in literature. After each chapter in the book is a “people’s history” section.
  - Five of these are about how non-mathematicians made interesting progress in math.
  - Two discuss ways that big social forces have influenced math history.

# A People's History of Math

- A “people’s history” generally studies the history of non-elites, although this term has been used in many different ways in literature. After each chapter in the book is a “people’s history” section.
  - Five of these are about how non-mathematicians made interesting progress in math.
  - Two discuss ways that big social forces have influenced math history.
  - Two focus on the progression to the point where many people can choose to study math.

# A People's History of Math

- A “people’s history” generally studies the history of non-elites, although this term has been used in many different ways in literature. After each chapter in the book is a “people’s history” section.
  - Five of these are about how non-mathematicians made interesting progress in math.
  - Two discuss ways that big social forces have influenced math history.
  - Two focus on the progression to the point where many people can choose to study math.
  - And one on who mathematicians were as people.

# People's History of Numbers

# People's History of Numbers

- Merchants used clay tokens to represent goods 10,000 years ago. E.g. from ~3500BC in Iran:

# People's History of Numbers

- Merchants used clay tokens to represent goods 10,000 years ago. E.g. from ~3500BC in Iran:



# People's History of Numbers

- Merchants used clay tokens to represent goods 10,000 years ago. E.g. from ~3500BC in Iran:



- Later, these were often stored in boxes, and one might write on the box to label what was inside. This advancement is due to “the people.”

# People's History of Numbers

# People's History of Numbers

- Hindu-Arabic numerals may have also come from common merchants, although it is unclear.

# People's History of Numbers

- Hindu-Arabic numerals may have also come from common merchants, although it is unclear.

“It is India that gave us the ingenious method of expressing all numbers by means of ten symbols, each symbol receiving a value of position as well as an absolute value; a profound and important idea which appears so simple to us now that we ignore its true merit. But its very simplicity and the great ease which it has lent to all computations put our arithmetic in the first rank of useful inventions; and we shall appreciate the grandeur of this achievement the more when we remember that it escaped the genius of Archimedes and Apollonius, two of the greatest men produced by antiquity.”

—Pierre-Simon Laplace (1749-1827)



# People's History of Numbers

# People's History of Numbers

- Hindu-Arabic numerals were much easier to use than Roman numerals. Some argue that their utility was guarded.

# People's History of Numbers

- Hindu-Arabic numerals were much easier to use than Roman numerals. Some argue that their utility was guarded.

The transition [in Europe to Hindu-Arabic numerals], far from being immediate, extended over long centuries. The struggle between the *Abacists*, who defended the old traditions, and the *Algorists*, who advocated the reform, lasted from the eleventh to the fifteenth century and went through all the usual stages of obscurantism and reaction. In some places, Arabic numerals were banned from official documents; in others, the art was prohibited altogether. And, as usual, did not succeed in abolishing, but merely served to spread *bootlegging*, ample evidence of which is found in the thirteenth century archives of Italy, where, it appears, merchants were using the Arabic numerals as a sort of secret code.

— Tony Dantzig in *Number: The Language of Science*

# People's History of Numbers

# People's History of Numbers

- To the present day, money has served as a catalyst for mathematical progress.

# People's History of Numbers

- To the present day, money has served as a catalyst for mathematical progress.
- Example: Maritime trade insurance groups developing risk management math

# People's History of Numbers

- To the present day, money has served as a catalyst for mathematical progress.
- Example: Maritime trade insurance groups developing risk management math
- Today, the math used in finance is incredibly advanced and quants are paid well to push their company's abilities further.